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Solution to Problem 1: 
 
a) 𝒌 = 𝑘0𝒛� = (𝜔/𝑐)𝒛�. 
 
b) The beam is linearly-polarized if either 𝐸𝑥0 = 0 or 𝐸𝑦0 = 0 or  𝜑𝑥0 = 𝜑𝑦0 or 𝜑𝑥0 = 𝜑𝑦0 ± 𝜋. 

The beam is circularly-polarized if 𝐸𝑥0 = 𝐸𝑦0 and 𝜑𝑥0 − 𝜑𝑦0 = ±𝜋/2. Under all other 
circumstances, the beam will be elliptically-polarized. 

 
c) Starting with the assumption that the amplitude and phase of the H-field components are 

(𝐻𝑥0,𝜓𝑥0) and �𝐻𝑦0,𝜓𝑦0�, we write 

 𝑯(𝒓, 𝑡) = 𝐻𝑥0 cos(𝑘0𝑧 − 𝜔𝑡 + 𝜓𝑥0)𝒙� + 𝐻𝑦0 cos�𝑘0𝑧 − 𝜔𝑡 + 𝜓𝑦0� 𝒚�. 

Maxwell’s 3rd equation then yields 

 𝜵 × 𝑬 = −𝜕𝑩
𝜕𝑡

           →           −𝜕𝐸𝑦
𝜕𝑧
𝒙� + 𝜕𝐸𝑥

𝜕𝑧
𝒚� = −𝜇0 �

𝜕𝐻𝑥
𝜕𝑡
𝒙� + 𝜕𝐻𝑦

𝜕𝑡
𝒚��. 

Consequently, 

 −𝜕𝐸𝑦
𝜕𝑧

= −𝜇0
𝜕𝐻𝑥
𝜕𝑡

 →    𝑘0𝐸𝑦0 sin�𝑘0𝑧 − 𝜔𝑡 + 𝜑𝑦0� = −𝜇0𝐻𝑥0𝜔 sin(𝑘0𝑧 − 𝜔𝑡 + 𝜓𝑥0) 

 →    (𝜔/𝑐)𝐸𝑦0 sin�𝑘0𝑧 − 𝜔𝑡 + 𝜑𝑦0� = −𝜇0𝐻𝑥0𝜔 sin(𝑘0𝑧 − 𝜔𝑡 + 𝜓𝑥0) 

 →    𝐻𝑥0 = −𝐸𝑦0/(𝜇0𝑐) = −𝐸𝑦0/𝑍0     and     𝜓𝑥0 = 𝜑𝑦0. 

Similarly, 

 𝜕𝐸𝑥
𝜕𝑧

= −𝜇0
𝜕𝐻𝑦
𝜕𝑡

    →    −𝑘0𝐸𝑥0 sin(𝑘0𝑧 − 𝜔𝑡 + 𝜑𝑥0) = −𝜇0𝐻𝑦0𝜔 sin�𝑘0𝑧 − 𝜔𝑡 + 𝜓𝑦0� 

 →    (𝜔/𝑐)𝐸𝑥0 sin(𝑘0𝑧 − 𝜔𝑡 + 𝜑𝑥0) = 𝜇0𝐻𝑦0𝜔 sin�𝑘0𝑧 − 𝜔𝑡 + 𝜓𝑦0� 

 →    𝐻𝑦0 = 𝐸𝑥0/(𝜇0𝑐) = 𝐸𝑥0/𝑍0     and     𝜓𝑦0 = 𝜑𝑥0. 

d) Direct multiplication of the E-field into the H-field obtained in part (c) now yields 

  𝑺(𝒓, 𝑡) = 𝑍0−1�𝐸𝑥0 cos(𝑘0𝑧 − 𝜔𝑡 + 𝜑𝑥0)𝒙� + 𝐸𝑦0 cos�𝑘0𝑧 − 𝜔𝑡 + 𝜑𝑦0� 𝒚�� 

 × �−𝐸𝑦0 cos�𝑘0𝑧 − 𝜔𝑡 + 𝜑𝑦0� 𝒙� + 𝐸𝑥0 cos(𝑘0𝑧 − 𝜔𝑡 + 𝜑𝑥0)𝒚�� 

 = 𝑍0−1�𝐸𝑥02 cos2(𝑘0𝑧 − 𝜔𝑡 + 𝜑𝑥0) + 𝐸𝑦02 cos2�𝑘0𝑧 − 𝜔𝑡 + 𝜑𝑦0��𝒛�. 

The Poynting vector 𝑺(𝒓, 𝑡) is the rate of flow of electromagnetic energy per unit area per unit 
time, evaluated at the point 𝒓 in space and at the instant 𝑡 of time. It must satisfy the energy 
continuity equation at all points 𝒓 in space at all instants 𝑡 in time. 

 
e) For circular-polarization, we have 𝐸𝑥0 = 𝐸𝑦0 and 𝜑𝑥0 = 𝜑𝑦0 ± 𝜋/2. Therefore, 
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 𝑺(𝒓, 𝑡) = 𝑍0−1𝐸𝑥02 [cos2(𝑘0𝑧 − 𝜔𝑡 + 𝜑𝑥0) + sin2(𝑘0𝑧 − 𝜔𝑡 + 𝜑𝑥0)]𝒛� = 𝑍0−1𝐸𝑥02  𝒛�. 

Clearly, the above expression is independent of 𝑧 and 𝑡. The electromagnetic energy thus 
flows uniformly and at the constant rate of 𝐸𝑥02 /𝑍0 along the z-axis 

f) For a linearly-polarized beam, we will have 

 𝑺(𝒓, 𝑡) = 𝑍0−1�𝐸𝑥02 + 𝐸𝑦02 � cos2(𝑘0𝑧 − 𝜔𝑡 + 𝜑𝑥0) 𝒛�. 

The above 𝑺 obviously varies with both 𝑧 and 𝑡. This means that at any given time, say, 
𝑡 = 𝑡0, the energy crossing a plane perpendicular to the z-axis at 𝑧1 is different from the 
energy crossing another perpendicular plane at 𝑧2. Conservation of energy is not violated, 
however, because, unlike the case of circular-polarization, the energy stored in the E and H 
fields in the region between 𝑧1 and 𝑧2 is not constant in this case. Recall that Poynting’s 
theorem in free-space requires that 𝜵 ∙ 𝑺 + 𝜕(½𝜀0𝑬 ∙ 𝑬 + ½𝜇0𝑯 ∙ 𝑯)/𝜕𝑡 = 0. Consequently, the 
difference between the energy entering at 𝑧 = 𝑧1 and the energy leaving at 𝑧 = 𝑧2 is given to 
(or taken away from) the energy stored in the E and H fields in the space between 𝑧1 and 𝑧2. 
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Solution to Problem 2: 

a) In the free-space region, the incident k-vector is 𝒌(𝑖) = (𝜔/𝑐)(sin𝜃 𝒙� + cos 𝜃 𝒛�). The E and H 
fields may then be written in terms of 𝒌(𝑖),𝜔, and the E-field amplitude 𝐸0, as follows: 

 𝑬(𝑖)(𝒓, 𝑡) = Re�𝐸0(cos𝜃 𝒙� − sin𝜃 𝒛�) exp�𝑖(𝒌(𝑖) ∙ 𝒓 − 𝜔𝑡)��, 

 𝑯(𝑖)(𝒓, 𝑡) =  Re�𝑍0−1𝐸0𝒚� exp�𝑖(𝒌(𝑖) ∙ 𝒓 − 𝜔𝑡)��. 

b) For the reflected beam, the k-vector is 𝒌(𝑟) = (𝜔/𝑐)(sin𝜃 𝒙� − cos𝜃 𝒛�), and the E and H 
fields, expressed as functions of 𝒌(𝑟),𝜔, the Fresnel reflection coefficient 𝜌𝑝, and the incident E-
field amplitude 𝐸0, are 

 𝑬(𝑟)(𝒓, 𝑡) = Re�𝜌𝑝𝐸0(cos 𝜃 𝒙� + sin𝜃 𝒛�) exp�𝑖(𝒌(𝑟) ∙ 𝒓 − 𝜔𝑡)��, 

 𝑯(𝑟)(𝒓, 𝑡) = − Re�𝑍0−1𝜌𝑝𝐸0𝒚� exp�𝑖(𝒌(𝑟) ∙ 𝒓 − 𝜔𝑡)��. 

c) For the transmitted beam, the k-vector is 𝒌(𝑡) = (𝜔/𝑐)�sin𝜃 𝒙� + �𝜀(𝜔) − sin2 𝜃 𝒛��. This is 
derived from the continuity of 𝑘𝑥 across the interface, and from the dispersion relation of the 
plasma, namely, 𝑘𝑥2 + 𝑘𝑧2 = (𝜔/𝑐)2𝜇(𝜔)𝜀(𝜔). The E and H fields, written in terms of 𝒌(𝑡),𝜔, the 
Fresnel transmission coefficient 𝜏𝑝, and the incident E-field amplitude 𝐸0, are 

 𝑬(𝑡)(𝒓, 𝑡) = Re �𝜏𝑝𝐸0 cos 𝜃 �𝒙� − sin𝜃
�𝜀(𝜔)−sin2 𝜃

𝒛�� exp�𝑖(𝒌(𝑡) ∙ 𝒓 − 𝜔𝑡)��, 

 𝑯(𝑡)(𝒓, 𝑡) = Re � 𝜏𝑝𝜀(𝜔)𝐸0 cos𝜃

𝑍0�𝜀(𝜔)−sin2 𝜃
𝒚� exp�𝑖(𝒌(𝑡) ∙ 𝒓 − 𝜔𝑡)��. 

In deriving the above expressions, we used the constraints imposed by Maxwell’s 1st and 3rd 
equations, namely, 𝒌(𝑡) ∙ 𝑬(𝑡) = 𝑘𝑥

(𝑡)𝐸𝑥
(𝑡) + 𝑘𝑧

(𝑡)𝐸𝑧
(𝑡) = 0  and  𝒌(𝑡) × 𝑬(𝑡) = 𝜇0𝜇(𝜔)𝜔𝑯(𝑡). 

 
d) The tangential components 𝐸𝑥

(𝑖),𝐸𝑥
(𝑟),𝐸𝑥

(𝑡) of the E-field must satisfy the continuity condition 
at the interface, as do the tangential components 𝐻𝑦

(𝑖),𝐻𝑦
(𝑟),𝐻𝑦

(𝑡) of the H-field. Therefore, 

 𝑬∥ continuity:    𝐸0 cos𝜃 + 𝜌𝑝𝐸0 cos 𝜃 = 𝜏𝑝𝐸0 cos 𝜃       →     1 + 𝜌𝑝 = 𝜏𝑝. 

 𝑯∥ continuity:   𝑍0−1𝐸0 − 𝑍0−1𝜌𝑝𝐸0 = 𝜏𝑝𝜀(𝜔)𝐸0 cos𝜃

𝑍0�𝜀(𝜔)−sin2 𝜃
        →     1 − 𝜌𝑝 = 𝜏𝑝𝜀(𝜔)cos𝜃

�𝜀(𝜔)−sin2 𝜃
 . 

Solving the above equations, we find 𝜌𝑝 = �𝜀(𝜔)−sin2 𝜃−𝜀(𝜔) cos𝜃
�𝜀(𝜔)−sin2 𝜃+𝜀(𝜔) cos𝜃

 and 𝜏𝑝 = 2�𝜀(𝜔)−sin2 𝜃
�𝜀(𝜔)−sin2 𝜃+𝜀(𝜔) cos𝜃

. 

e) Since 𝜀(𝜔) is real-valued and negative, 𝜌𝑝 may be written as follows: 

 𝜌𝑝 = 𝑖�|𝜀(𝜔)|+sin2 𝜃+|𝜀(𝜔)| cos𝜃
𝑖�|𝜀(𝜔)|+sin2 𝜃−|𝜀(𝜔)| cos𝜃

 

Thus 𝜌𝑝 is seen to be the ratio of a complex number to its conjugate, which has a magnitude 
of 1. Since �𝜌𝑝� = 1, the reflectivity is 100%. This does not contradict the existence of 
electromagnetic waves within the plasma, because the time-averaged Poynting vector of the 
plane-wave inside the plasma, like that of an evanescent wave, has a vanishing z-component. 
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