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Solution to Problem 1:
a) k=kyz=(w/c)z.

b) The beam is linearly-polarized if either Eyg = 0 or Eyg = 0 0F @9 = @y OF Pxg = Py £ 1.
The beam is circularly-polarized if Eyo = E,o and @, — ¢, = £m/2. Under all other
circumstances, the beam will be elliptically-polarized.

c) Starting with the assumption that the amplitude and phase of the H-field components are
(Hyo, ¥x0) and (Hyg, ¥y ), We write
H(r,t) = Hycos(koz — wt + ) X + Hyy cos(koz —wt + lpyo) y.
Maxwell’s 3" equation then yields
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Consequently,
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0z
- (w/c)Ey sin(koz — wt + (pyo) = —poHyow sin(kyz — wt + Py)
- Hyy = —Eyo/(lloc) = - yO/ZO and Y, = Pyo-
Similarly,
OEy oH . .
—. = —Ho a_ty = —koEyosin(koz — wt + @) = —poHyow sin(koz — wt + zpyo)

= (w/c)Eyosin(koz — wt + @y) = oHyow sin(koz —wt + lpyo)
- Hy = Exo/(uoc) = Exo/Zy and Yyo = Pxo-
d) Direct multiplication of the E-field into the H-field obtained in part (c) now yields
S(r,t) = Zgl[ExO cos(koz — wt + @y0) X + Ey cos(koz — wt + (pyo) ?]
X [—Eyo cos(koz —wt + (pyo) X + E o cos(kgz — wt + @) ?]
= Zy*EZy cos?(koz — wt + @) + EZ cos?(koz — wt + ¢y0)]2.
The Poynting vector S(r, t) is the rate of flow of electromagnetic energy per unit area per unit
time, evaluated at the point r in space and at the instant ¢ of time. It must satisfy the energy

continuity equation at all points r in space at all instants ¢ in time.

e) For circular-polarization, we have Eyq = Ey and @,y = @, = m/2. Therefore,



S(r,t) = ZyE%,[cos?(kgz — wt + @y) + sin?(koz — wt + @,0)]2 = Z5 1EZ, 2.

Clearly, the above expression is independent of z and t. The electromagnetic energy thus
flows uniformly and at the constant rate of E2,/Z, along the z-axis

f) For a linearly-polarized beam, we will have
S(r,t) = Zg*(E2 + EZ) cos?(koz — wt + @) 2.

The above S obviously varies with both z and t. This means that at any given time, say,
t = t,, the energy crossing a plane perpendicular to the z-axis at z; is different from the
energy crossing another perpendicular plane at z,. Conservation of energy is not violated,
however, because, unlike the case of circular-polarization, the energy stored in the E and H
fields in the region between z; and z, is not constant in this case. Recall that Poynting’s
theorem in free-space requires that V - S + 0(%e&,E - E + Y%uoH - H) /3t = 0. Consequently, the
difference between the energy entering at z = z; and the energy leaving at z = z, is given to
(or taken away from) the energy stored in the E and H fields in the space between z; and z,.




Solution to Problem 2:

a) In the free-space region, the incident k-vector is k® = (w/c)(sin8 % + cos 8 2). The E and H
fields may then be written in terms of k@, w, and the E-field amplitude E,, as follows:

EO(rt) = Re{EO(cos 06X —sinb 2) exp[i(k(i) r— wt)]},
HO(r,t) = Re{Z51E,y exp|i(kV - 7 — wt)]}.

b) For the reflected beam, the k-vector is k™ = (w/c)(sin8 % — cos 6 2), and the E and H
fields, expressed as functions of k™, w, the Fresnel reflection coefficient pp, and the incident E-
field amplitude E,, are

EO(rt) = Re{ppEO(cos OX +sin6 2) exp[i(k(r) T —wb)]},
HD(r,t) = — Re{Zo_lppEO? exp[i(k(r) r— a)t)]}.

c) For the transmitted beam, the k-vector is k® = (w/c)[sin@% + \/e(w) — sin62]. This is
derived from the continuity of k, across the interface, and from the dispersion relation of the
plasma, namely, k2 + k2 = (w/c)*u(w)e(w). The E and H fields, written in terms of k®, w, the
Fresnel transmission coefficient z,,, and the incident E-field amplitude E, are

sin 8
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In deriving the above expressions, we used the constraints imposed by Maxwell’s 1 and 3™
equations, namely, k® - E® = kOF® L kOp® — 0 and k® x E® = pou(w)wH®.

d) The tangential components E,Si),E,Er),E,Et) of the E-field must satisfy the continuity condition
at the interface, as do the tangential components H. (l), Hﬁ”, Hﬁt) of the H-field. Therefore,

E continuity: E,cos6 + ppEycos8 = t,Egcos - 1+p, =1,
Tpe(w)Eq cos 6 N 1— o Tpe(w) cos 6
Zp\ e(w)—sin2 @ Pp = Je(w)—sin20
J&(w)—sinZ —&(w) cos O and 7.. = 24/ &(w)-sin2 6
Je(w)—sin? 8+&(w) cos O P Je(w)—sinZ O+e(w) cos O’
e) Since e(w) is real-valued and negative, p, may be written as follows:

__iyle(w)]+sin? 0+|e(w)| cos O

- i/]e(w)|+sin2 B—|e(w)| cos O

H| continuity: Zg'Ey —Z5 pyEo =

Solving the above equations, we find p,, =

Pp

Thus p,, is seen to be the ratio of a complex number to its conjugate, which has a magnitude

of 1. Since |p,| =1, the reflectivity is 100%. This does not contradict the existence of

electromagnetic waves within the plasma, because the time-averaged Poynting vector of the
plane-wave inside the plasma, like that of an evanescent wave, has a vanishing z-component.
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