Opti 501 Prelim. Spring 2012

Solution to Problem 1)

a) V. D(r’t) = pfree(rlt)!
8 B oD(r,t)
VxH(r,t)= Jfree(r,t)Jr—at :
VxE(r,t)= —M,
ot
V-B(r,t)=0.

In the above equations, r =xX+yy+zZ is an arbitrary point in space, while t is an arbitrary
instant in time. E is the electric field, H is the magnetic field, D is the displacement, and B is the
magnetic induction. The fields are related to each other, to the permittivity and permeability of
free space, & and 4, and to polarization P and magnetization M as follows

D(r,t)=¢ E(r,t)+ P(r,t),
B(r,t) =g, H(r,t)+ M(r,t).

The sources of the electromagnetic fields (namely, E and H) are the free charge density prree,
free current density Jsee, polarization P (which is the density of electric dipole moments), and
magnetization M (which is the density of magnetic dipole moments). The operator J/ot
represents partial differentiation with respect to time, V- is the divergence operator, and Vx is
the curl operator. The divergence of a vector field such as D(r,t), which turns out to be a scalar
field, is defined as the integral of D(r,t) over a small closed surface, normalized by the enclosed
volume. The curl of a vector field such as E(r,t), which turns out to be another vector field, when
projected onto the surface normal of a small surface element, yields the line integral of E(r,t)
around the boundary of the small surface element, normalized by the surface area of the element.

b) To derive the charge-current continuity equation from Maxwell’s equations, apply the
divergence operator to both sides of the second (Maxwell-Ampere) equation. The divergence of
curl is always equal to zero and, therefore, the left-hand-side of the equation becomes
V-(VxH)=0. The right-hand side, V-J. _+J(V-D)/Jt, thus becomes zero. Maxwell’s first

equation (Gauss’s law) now allows one to replace V-D with pfe, Yielding the continuity
equation as V-J; .+ Jdp;../ct =0. This equation informs that the integrated free current over any

closed surface is precisely balanced by changes in the electrical charge contained within the
closed surface. If there is a net outflow of the current, the charge within the closed surface must
be decreasing, and if there is a net inflow of current, the charge within must be increasing.

free

c) In the first of Maxwell’s equations, we substitute D = ¢ E + P and obtain
V'(EOE + P) = Pree 80‘7' E = Prree -V-P - ‘C"OV' E = Pree +pk§§l)md'

The bound-charge density is thus seen to be p{@ (r,t)=-V-P(r,t).

bound



In the second Maxwell equation, we multiply both sides by s, then add V' xM to both
sides, in order to replace H with B through the identity B = 4 H + M. We alsouse D=¢,E+P

on the right-hand side of the equation to get rid of D. We will have
d(e,E+P)

free (o]

UV xH+VxM = J +VxM

- V xB =, (I + OPIOt + 11V x M) + 1, £, OE It

free

— VxB=pu 3+ ) +uclEIN.

free u

The bound electric current density is thus found to be J\2 =P/t + ;' =M. Since the

remaining Maxwell equations do not contain D and H, they remain unchanged.

d) The divergence of J© _is readily obtained as follows:

bound

VI

bound

=O(V-P)Iot+ u'V- (W xM).

On the right-hand side of the above equation, the divergence of curl is always zero. Also the
divergence of P(r,t) is, by definition, —p( .. Therefore, V-3 +5p Iot=0. This is the

bound bound

charge-current continuity equation for the bound electrical charge and current defined in part (c).
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Solution to Problem 2)

a) E,(r,t) = E, cos[n(w,)(@,/ €)z—-w,t]X, (1a)
H, (r,t) = n(@,)Z,'E, cos[n(@,)(®, / c) z—w,t]y. (1b)
Similarly,
E,(r,t) = E, cos[n(w,)(w, ! €)Z—w,t]X, (2a)
H, (1) = n(,)Z,'E, cos[n(w,)(@,/ )z~ w,A19. (2b)

Here c= 1/\/@ is the speed of light in vacuum, while Z,= v,/ & is the impedance of free space.

b) The rate of flow of electromagnetic (EM) energy is given by the Poynting vector, as follows:
S(r,t) = E(r,t)x H(r,t) = E.{cos[n(@,)(@,/c) z— wt] + cos[n(w,)(w,/C) Z— w,t]} X
x Z.'E {n(w,) cos[n(@,)(@,/c) z— at]+ n(w,) cos[n(w,)(@,/C) Z—w,t]} §
= Z'EX{n(@,) cos’[n(@,)(@, | €)z— o]+ N(@,) cos’ [N(w,)(w, | C)Z—w,t]
+[n(®,) + n(@,)]cos[n(w,)(w, ] c)z—wt]cos[n(w,)(w, | ) z—w,t]}z
= %Zo’ 'EX{[n(w,) + n(@,)] + n(w,) cos[2a, n(w,)(z/C) - 2a,t] + N(w@,) coS[2w,N(@,)(2/C) — 2w,t]
+[n(@)+n(w,)]cos{[wn(@,) + ,N(w,)](z/C) - (e, + w,)t}
+[Nn(e,)+n(@,)] cos{[w,n(w,) ~ @,n(@,)](2/C) — (&, —w,) 1} } 2. @)

c) In the preceding expression, the terms with frequencies 2m, 2@, and (o1+ ;) are rapidly-
oscillating functions of time which quickly average to zero. The first term, however, is a
constant, and the last term, which varies slowly with time, co-propagates with the envelope of
the beat signal. Dropping the rapidly-oscillating terms, we will have

S(r,t) = 5[n(@) +n(@,)1Z; E{1+ cos{[wn(w,) - on()](2/0) - (@,~ ) t}}

z-t }} 4)

In the above equation, the rate-of-flow of the beat signal’s EM energy is seen to travel along
the z-axis at the constant velocity c/ng, where ng=d[wn(w)]/d®|,=«, is the group refractive index
of the medium at the center frequency @, of the beat signal. The energy flow-rate is thus seen to
propagate along the z-axis at the group velocity V= c/ng. Note that the final expression obtained
in Eq.(4) is positive everywhere, whereas the rapidly-oscillating terms that were dropped from
Eq.(3) keep switching direction (between +z and —2) at very high frequencies.

Y d[en(@)]
~[n(@) +n(@,)]1Z;"E? cos {%M’{%




