Fall 2013 Written Comprehensive Exam (Opti 501)

Solution to Problem 1)

a) At the interface of the perfect conductor with the dielectric layer, the tangential *E*-field must vanish. Therefore, $E_x(x, y, z = 0, t) = E_1 \sin(\varphi_1) \cos(\omega_0 t) = 0$, which leads to $\varphi_1 = 0$ or π . In what follows, we shall set $\varphi_1 = 0$.

b)
$$\nabla \times \boldsymbol{E}(\boldsymbol{r},t) = -\frac{\partial \boldsymbol{B}(\boldsymbol{r},t)}{\partial t} \rightarrow \left(\frac{\partial E_{x}}{\partial z}\right) \hat{\boldsymbol{y}} = -\mu_{0}\mu(\omega_{0})\frac{\partial \boldsymbol{H}}{\partial t}$$

 $\rightarrow E_{1}k_{1}\cos(k_{1}z)\cos(\omega_{0}t) = -\mu_{0}\frac{\partial H_{y}}{\partial t} \rightarrow \boldsymbol{H}(\boldsymbol{r},t) = -\left(\frac{E_{1}k_{1}}{\mu_{0}\omega_{0}}\right)\hat{\boldsymbol{y}}\cos(k_{1}z)\sin(\omega_{0}t).$

c)
$$\nabla \times \boldsymbol{H}(\boldsymbol{r},t) = \boldsymbol{J}_{\text{free}}(\boldsymbol{r},t) + \frac{\partial \boldsymbol{D}(\boldsymbol{r},t)}{\partial t} \rightarrow -\left(\frac{\partial H_{\boldsymbol{y}}}{\partial z}\right) \hat{\boldsymbol{x}} = \varepsilon_{0} \varepsilon(\omega_{0}) \frac{\partial \boldsymbol{E}(\boldsymbol{r},t)}{\partial t}$$

$$\rightarrow -\left(\frac{E_{1}k_{1}^{2}}{\mu_{0}\omega_{0}}\right) \sin(k_{1}z) \sin(\omega_{0}t) = -\varepsilon_{0}\varepsilon(\omega_{0})\omega_{0}E_{1} \sin(k_{1}z) \sin(\omega_{0}t)$$

$$\rightarrow k_{1}^{2} = \mu_{0}\varepsilon_{0}\varepsilon(\omega_{0})\omega_{0}^{2} \rightarrow k_{1} = (\omega_{0}/c)n(\omega_{0}).$$

d) Considering that $\rho_{\text{free}} = 0$ and $\mathbf{D} = \varepsilon_0 \varepsilon \mathbf{E}$, the first Maxwell equation becomes $\nabla \cdot \mathbf{E} = 0$. We thus have $\nabla \cdot \mathbf{E} = \partial E_x / \partial x = 0$. Similarly, since $\mathbf{B} = \mu_0 \mu \mathbf{H}$, Maxwell's fourth equation becomes $\nabla \cdot \mathbf{H} = 0$, which is automatically satisfied given that $\nabla \cdot \mathbf{H} = \partial H_y / \partial y = 0$.

e)
$$\nabla \times \boldsymbol{E}(\boldsymbol{r},t) = -\frac{\partial \boldsymbol{B}(\boldsymbol{r},t)}{\partial t} \rightarrow \left(\frac{\partial E_{x}}{\partial z}\right) \hat{\boldsymbol{y}} = -\mu_{0} \frac{\partial \boldsymbol{H}}{\partial t}$$

$$\rightarrow E_{0}k_{0}\cos(k_{0}z + \varphi_{0})\cos(\omega_{0}t) = -\mu_{0} \frac{\partial H_{y}}{\partial t}$$

$$\rightarrow \boldsymbol{H}(\boldsymbol{r},t) = -\left(\frac{E_{0}k_{0}}{\mu_{0}\omega_{0}}\right) \hat{\boldsymbol{y}}\cos(k_{0}z + \varphi_{0})\sin(\omega_{0}t).$$

Substitution for E(r,t) and H(r,t) in Maxwell's second equation now yields

$$\nabla \times \boldsymbol{H}(\boldsymbol{r},t) = \boldsymbol{J}_{\text{free}}(\boldsymbol{r},t) + \frac{\partial \boldsymbol{D}(\boldsymbol{r},t)}{\partial t} \rightarrow -\left(\frac{\partial H_{\boldsymbol{y}}}{\partial z}\right) \widehat{\boldsymbol{x}} = \varepsilon_0 \frac{\partial \boldsymbol{E}(\boldsymbol{r},t)}{\partial t}$$

$$\rightarrow -\left(\frac{E_0 k_0^2}{\mu_0 \omega_0}\right) \sin(k_0 z + \varphi_0) \sin(\omega_0 t) = -\varepsilon_0 \omega_0 E_0 \sin(k_0 z + \varphi_0) \sin(\omega_0 t)$$

$$\rightarrow k_0^2 = \mu_0 \varepsilon_0 \omega_0^2 \rightarrow k_0 = \omega_0/c.$$

f) At the interface located at z = d, both E_x and H_y must be continuous. We thus have

$$\begin{cases} E_1 \sin(k_1 d) \cos(\omega_0 t) = E_0 \sin(k_0 d + \varphi_0) \cos(\omega_0 t) \\ -\left(\frac{E_1 k_1}{\mu_0 \omega_0}\right) \cos(k_1 d) \sin(\omega_0 t) = -\left(\frac{E_0 k_0}{\mu_0 \omega_0}\right) \cos(k_0 d + \varphi_0) \sin(\omega_0 t) \end{cases}$$

$$\rightarrow \begin{cases} E_1 \sin(k_1 d) = E_0 \sin(k_0 d + \varphi_0) \\ E_1 k_1 \cos(k_1 d) = E_0 k_0 \cos(k_0 d + \varphi_0) \end{cases} \rightarrow \begin{cases} \tan(k_1 d) = n(\omega_0) \tan(k_0 d + \varphi_0) \\ E_1 / E_0 = \sin(k_0 d + \varphi_0) / \sin(k_1 d) \end{cases}.$$

The above equations may now be solved for the values of φ_0 and E_1/E_0 .

Fall 2013 Written Comprehensive Exam (Opti 501)

Solution to Problem 2)

a)
$$\nabla \times \boldsymbol{H}(\boldsymbol{r},t) = \boldsymbol{J}_{\text{free}}(\boldsymbol{r},t) + \frac{\partial \boldsymbol{D}(\boldsymbol{r},t)}{\partial t} \rightarrow -\left(\frac{\partial H_{y}}{\partial z}\right) \hat{\boldsymbol{x}} + \left(\frac{\partial H_{y}}{\partial x}\right) \hat{\boldsymbol{z}} = \varepsilon_{0} \frac{\partial \boldsymbol{E}(\boldsymbol{r},t)}{\partial t}$$

$$\rightarrow -H_{0}k_{z} \cos(k_{x}x) \cos(k_{z}z - \omega_{0}t) \hat{\boldsymbol{x}} - H_{0}k_{x} \sin(k_{x}x) \sin(k_{z}z - \omega_{0}t) \hat{\boldsymbol{z}} = \varepsilon_{0} \frac{\partial \boldsymbol{E}(\boldsymbol{r},t)}{\partial t}$$

$$\rightarrow \boldsymbol{E}(\boldsymbol{r},t) = \frac{H_{0}k_{z}}{\varepsilon_{0}\omega_{0}} \cos(k_{x}x) \sin(k_{z}z - \omega_{0}t) \hat{\boldsymbol{x}} - \frac{H_{0}k_{x}}{\varepsilon_{0}\omega_{0}} \sin(k_{x}x) \cos(k_{z}z - \omega_{0}t) \hat{\boldsymbol{z}}.$$

b)
$$\nabla \times E(r,t) = -\frac{\partial B(r,t)}{\partial t} \rightarrow \left(\frac{\partial E_x}{\partial z} - \frac{\partial E_z}{\partial x}\right) \hat{y} = -\mu_0 \frac{\partial H}{\partial t}$$

$$\rightarrow \left(\frac{H_0 k_z^2}{\varepsilon_0 \omega_0}\right) \cos(k_x x) \cos(k_z z - \omega_0 t) + \left(\frac{H_0 k_x^2}{\varepsilon_0 \omega_0}\right) \cos(k_x x) \cos(k_z z - \omega_0 t)$$

$$= \mu_0 H_0 \omega_0 \cos(k_x x) \cos(k_z z - \omega_0 t)$$

$$\rightarrow k_x^2 + k_z^2 = \mu_0 \varepsilon_0 \omega_0^2 \rightarrow k_x^2 + k_z^2 = (\omega_0/c)^2.$$

To ensure that both k_x and k_z are real-valued, we may define an angle θ (see the figure) such that $k_x = (\omega_0/c) \sin \theta$ and $k_z = (\omega_0/c) \cos \theta$.

- c) The tangential component of the *E*-field must vanish at the inner surfaces of the perfect conductors. Therefore, the necessary and sufficient condition for the admissibility of the guided mode is $E_z(x=\pm \frac{1}{2}d,y,z,t)=0$, which is equivalent to $\sin(\pm \frac{1}{2}k_xd)=0$. We must thus have $\frac{1}{2}k_xd=m\pi$, where m is an arbitrary integer. In other words, $k_x=(\omega_0/c)\sin\theta=2\pi m/d$, or, equivalently, $\sin\theta=m\lambda_0/d$.
- d) The surface-charge-density is equal to D_{\perp} in the immediate vicinity of the surface, that is, $|\sigma_s| = D_x = \varepsilon_0 E_x$. The sign of σ_s is positive if D_{\perp} exits from the surface, and negative if D_{\perp} enters into the surface. We have

$$\sigma_{S}(x = \pm \frac{1}{2}d, y, z, t) = \mp (H_{0}k_{z}/\omega_{0})\cos(\frac{1}{2}k_{x}d)\sin(k_{z}z - \omega_{0}t)$$
$$= \mp (-1)^{m}(H_{0}k_{z}/\omega_{0})\sin(k_{z}z - \omega_{0}t).$$

The surface-current-density is equal in magnitude and perpendicular in direction to H_{\parallel} in the immediate vicinity of the surface, that is, $|J_s| = H_y$. The direction of the current is related to the direction of the magnetic field via the right-hand rule. We have

$$J_{s}(x = \pm \frac{1}{2}d, y, z, t) = \mp H_{0}\hat{\mathbf{z}}\cos(\frac{1}{2}k_{x}d)\sin(k_{z}z - \omega_{0}t) = \mp (-1)^{m}H_{0}\hat{\mathbf{z}}\sin(k_{z}z - \omega_{0}t).$$

e) The charge-current continuity equation at the inner surfaces of the conductors may now be written as follows:

$$\nabla \cdot \boldsymbol{J}_{S} + \frac{\partial \sigma_{S}}{\partial t} = \frac{\partial J_{SZ}}{\partial z} + \frac{\partial \sigma_{S}}{\partial t}$$

$$= \mp (-1)^{m} H_{0} k_{z} \cos(k_{z}z - \omega_{0}t) \pm (-1)^{m} H_{0} k_{z} \cos(k_{z}z - \omega_{0}t) = 0.$$