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Solution to Problem 1) 

a) Lorenz Gauge: o oo o2
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c) In free space, free free0, 0, 0, and 0.    J P M  Consequently, D = oE and B =oH. 

Maxwell’s equations thus become 
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Thus, the only constraint on the parameters, aside from the Lorenz gauge o o
2( / )c  k A , is 

k2 = (/c)2. 
 
d) The plane-wave is inhomogeneous (or evanescent) when the imaginary component of k is 

non-zero. The constraint k2 = (/c)2 thus yields 
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For the plane-wave to be evanescent, it is thus necessary for k' and k'' to be orthogonal to each 
other. It is also necessary for |k' | to be greater than /c, so that |k'' | will be real-valued. 

 
e) When k is a real-valued vector, i.e., when k'' = 0, the plane-wave will be homogeneous. Both 

Eo and Bo will then be proportional to the transverse component Ao┴= Ao(c/)2(k ·Ao)k of 
Ao, with Bo rotated around the k-vector by 90º. The plane-wave will be linearly polarized if 
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the real and imaginary parts of this transverse vector potential, namely, A'o┴ and A''o┴ , happen 
to be parallel to each other, or if one of them (either A'o┴ or A''o┴) vanishes. 

 
f) Again, the plane-wave is homogeneous when k'' = 0. As before, Eo and Bo will be proportional 

to Ao┴ , with Bo rotated around k by 90º. The plane-wave will be circularly polarized if A'o┴ 
and A''o┴ happen to be equal in magnitude and perpendicular to each other. 

 
g) The time-averaged rate of flow of electromagnetic energy is given by the time-averaged 

Poynting vector, that is, 
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Solution to Problem 2) 
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b) Denoting the electromagnetic energy-density at point z and instant t by E (z, t), we will have 
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Integration of the above energy-density over z from 0 to L yields L/2 for sin2(kz) and zero 
for cos(2kz). The total energy contained in the cavity thus turns out to be oEo

2AL, independent 
of time. The number of photons is now found to be N =oEo

2AL/(ћ). At any given moment, 
one-half of these photons may be said to be propagating from left to right, while the remaining 
half travel from right to left. 
 

c) At z = 0, the magnetic field at the mirror surface is o o
1 ˆ( 0 , ) 2 sin( ).z t Z E t   H y  Since the 

fields inside a perfect conductor are always zero, Maxwell’s boundary conditions require that 
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average of the H-fields immediately in front of and immediately beneath the surface, that is, 

o o
1

eff ˆ( 0, ) sin( ).z t Z E t  H y  The Lorentz force-density exerted by this field on the surface 

current Js is, therefore, going to be 

o o o o o
2

o o o
2

eff
1 1ˆ ˆ2 sin( ˆ( 0, ) ( 0, ) 2 sin ( )) [ sin( .) ]s Z E t Z Et t E ttz z         xJ H zy  



 3

Time-averaging and integration over the surface area of the mirror yields a total force equal 

to o o
2 ˆ( 0, ) .z t E A    F z  A similar procedure (or an argument from symmetry) yields the 

force on the mirror located at z = L as o o
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d) The work done by radiation pressure in moving the mirror a distance z adds to the kinetic 
energy of the mirror. Since the mirror is stationary at first, the work done in moving it from z = L 
to z = L+z must be equal to its final kinetic energy, that is, ½MV 2 = Fzz = oEo

2Az. 
 
e) For the forward propagating wave inside the cavity, the Poynting vector is given by 
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The electromagnetic momentum density is given by S(z, t)/c2. Integration over the volume of 
the cavity thus yields the total momentum content of the forward-propagating wave as 
½oEo

2AL/c. Upon reflection from the mirror located at z = L, twice this momentum will be 
transferred to the mirror during the time interval ½t = L/c, which is the time it takes for the 
entire forward-propagating wave within the cavity to bounce off the front mirror. By this time, 
the other plane-wave has turned around and is now propagating in the forward direction, so, 
during the next ½t interval, another transfer of momentum (from the electromagnetic field to 
the front mirror) takes place. The total momentum acquired by the front mirror between t = to and 
t = to+2L/c is, therefore, given by MV = 2oEo

2AL/c = oEo
2At. This result is also consistent 

with Newton’s law, F = dp /dt, when applied to the front mirror under the influence of the 

electromagnetic force o o
2 ˆ( , ) .z L t E A   F z  Alternatively, one could obtain the momentum of 

the mirror by multiplying the total number of photons N, computed in part (b), with twice the 
momentum of each photon, ћ/c, thus arriving at MV = 2N ћ/c = 2oEo

2AL/c. 
 
f ) Since L = N /2 = cN/, we have dL/d = cN/ 2 = L/. Therefore,  z /L =  /. 
 
g) In part (d) we found that ½MV 2 = oEo

2Az. Writing ½MV 2 = ½(MV )V and substituting for 
the momentum M V the result obtained in part (e), namely, MV = oEo

2At, we find z = ½Vt. 
This should not come as a surprise, however, considering that over the short time interval t, the 
radiation pressure exerts a constant force on the front mirror, resulting in a constant acceleration 
a. Since z = ½a(t)2 and V = at, it is obvious that z must be equal to ½Vt. None of the 
results obtained thus far require the restriction of t to the specific value 2L/c; in other words, 
we expect to find the same results for any sufficiently small t. 

Next, we substitute the above z into the expression for /  obtained in part (f ). We find 

 / =  z /L = ½Vt /L =V/c. 

This is the formula for the Doppler shift upon reflection from a flat mirror moving at the constant 
velocity ½V z^ , which, in the system under consideration, is the average mirror velocity during 
the time interval t = 2L/c. What is special about t = 2L/c is that it is the time interval during 
which each and every photon inside the cavity gets exactly one chance to bounce off the front 
mirror. Without this restriction, one does not arrive at the Doppler relation between   and the 
(average) mirror velocity. The red-shift (or cooling down) of the photons is a direct consequence 
of their transfer of energy and momentum to the free-standing mirror. 
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At much later times, when t >> to, the free mirror will have an initial velocity V in the 
beginning of each cycle, reaching V+V after a time interval t = 2L/c. (L is now the length of 
the cavity in the beginning of the cycle.) The increase in the kinetic energy of the mirror will 
then be Fzz = MVV, whereas the change in the mirror’s momentum will be Fzt = MV. 
Consequently, z = Vt  and  / =  z /L =2V/c, which is the Doppler shift upon reflection 
from a mirror moving at an average velocity V + ½V, provided, of course, that V is negligible 
compared to V. 

 


