Opti 501 Solutions to Prelim Questions Fall 2011

Problem 1)
a) The plane-waves’ E- and H-fields have the following general form:
E(r,t)=E, expli(k-r—a,t)],
H(r,t) =H_ exp[i(k-r —a,t)].
For the incident (i), reflected (r), and transmitted (t) beams we have
k@ =(n,e,/c) (sin 8§ —cos 7),
k() = (n,®,/c) (sin 8 + cos 67),
k® = (n,w,/c)(sin 'Y — cos §'2).
In what follows, we shall use Maxwell’s 31 equation, V' x E =—JB/At, to relate the H-field
to the E-field via the unit vector K =k/k along the propagation direction, namely,
H,=kxE, /(u,m)=M0/Z)kxE,.
Defining the Fresnel reflection and transmission coefficients for p- and s-light as p,, ps, 7p,
and s, we write
E.” = EV%+E," (cos 09 +sin 62),
H" = (n/Z,)(sin 0§ —cos 92)x E, " = (n,/ Z,)[E, "k~ E.V (cos 0§ +sin 02)].

B = p,B%+ p,E," (cos 09 ~sin 02),
Ho(r) = (n,/Z,)(sin @Y +cos B2) x Eo(r) =(n/Z,) [—PpEp(i))A( +pSES(i)(cosl9§/—sin 07)].

EY =r,EVR+7,E, " (cos@'§ +sin'2),
H," = (n,/Z,) (sin0'§—cos0')xE,V = (n,/Z,) [r,E, V%~ 7,EV (cos 6§ +5in 6'2)].

Note that the Snell’s law requirement, ky(i): ky(r) = ky(t), is readily satisfied for the reflected

beam by setting 0'=0"=6, whereas for the transmitted beam we must have n;sin@=n,siné".
Also, within the transmission medium, (k;+ k2)M= (n,w,/c)* results in the following relation:

k"= —(nhwy/C) cos @ = —(Mw,/C)V1 —sin"&'. As long as siné' is below unity, the argument of the
square root will be non-negative and, therefore, the sign of the square root will be positive (by
convention). However, when n;sind >n,, the square root becomes imaginary, necessitating a
choice between + and — for its sign. In the geometry chosen for this problem, we must choose
cosd' =iVsin’0'—1= i\/(nlzsinze/ nzz) —1, to ensure that the evanescent wave inside the
transmission medium decays exponentially away from the interface. Note also that 7, is defined
slightly differently here than in Chapter 7; here 7, is the transmission coefficient for Ep, not Ey.




b) To satisfy the boundary conditions we equate the tangential components of the E- and H-fields
across the interface. We will have

Continuity of Ey: Es(i) + PO Es(i) =7 Es(i) - 1+pg =14,
Continuity of Ey: Ep(i)cos 0+ ppEp(i)cos 0= rpEp(i)cos o' - (I+pp)cosd=7,cos8',
Continuity of Hy: nlEp(i) - nlppEp(i) = nzrpEp(i) - n(-p,)=n,7,,

Continuity of Hy: —n, Es(i) cos@+n, p Es(i) cosf =—n,7, Es(i) cosd’ — n(l-p,)cosd=n,r cosd"

The 1* and 4™ of the above equations then yield
_ Nnycos@—n,cosd . 2n,cos @
n,cos@+n,cosd’’ ® n,cos@+n,cosd

Ps

Similarly, from the 2" and 3™ equations we find

n,cos@ —n,cos & 2n,cosd
= , T, = :
n,cos@ +n,cosd P n,cosd +n,cosd

P

c) When pp=0 we have n,cosé' =n,cosé, from which, after some algebraic manipulations, we

obtain tand=n,/n; and tan&'=n;/n,. This incidence angle at which the reflectivity of p-polarized
light vanishes is known as Brewster’s angle, &g. There is no Brewster’s angle for s-light.

d) When cos@' becomes imaginary, the magnitudes of both pp and ps become unity, that is,
lppl=]pd =1. This is because these Fresnel coefficients assume the form (a—ib)/(a+ib), which,
as the ratio of two complex numbers of equal magnitude, has a magnitude of 1. As mentioned
earlier, for cos#' to become imaginary, the incidence angle must exceed a certain critical angle,
i.e., N;sin@ >y, which happens when n;>n, and 8> 6@.;;=arcsin(n,/n;). These conditions apply
to p-light and s-light alike. Beyond the critical angle 8., both p- and s-polarized incident beams
get totally reflected at the interface, although the phase of the reflection coefficient p, differs
from that of ps at any given incidence angle 6.




Problem 2)
a) Continuity of Ex at the entrance facet: Ex(i) = EX(1)+ EX(Z).
Continuity of Hy at the entrance facet: H," =H,"+H,” — Z,'EY=nz,"E"-nz,'E.
We can now solve the above equations for Ex(l) and Ex(z), as follows:
EV =[(n+1)/2n]EY,
EX =[(n-1)/2nE{.
The H-fields are subsequently found to be
H{"=[(n+1)/2Z,1EY,
H{? = -[(n-1)/2Z,1E.

The transmitted beam is obtained by matching the boundary conditions at the exit facet of
the slab, and using the fact that the magnitude of the k-vector inside the slab is nk,=27zn/4,. We
will have

E{V=EMexp(ink,d)+E{Pexp(~ink d) = ENexp(iz)+ EPexp(-iz) = -E{V-EP = ~E,
H{0=H Pexp(ink,d) + H Pexp(-ink d) =—H " - H? = —E{"/Z, .
The transmitted field is thus the same as the incident field, albeit with a 180° phase shift.
b)
<S,(zt)> = TRe{E,(z)Hy(z 1)} =2 Re {{E{ exp[i(nk,z— a,1)] + E Vexp[i (- nk z— ,1)]}
x{H Vexp[-i(nk,z— o,t)]+ H{ exp[—i(-nk z— o,0)]} }
= TRe{E{'H "+ EPH P + E{VH Pexp ink 2) + EXPHexp (-2ink, 2)}
={(n+1)> - (n-1)>-2(n*~ ) Re[isin2nk,2)]} E{’*/(8nZ,) =1E7Z,.

The final result is obviously the same as the time-averaged rate of energy flow (per unit area
per unit time) in the incidence medium as well as that in the transmission medium.

¢) The above results will remain essentially the same if d=m/A,/(2n), where m=1 is an arbitrary
integer. The only change will be in the phase of the transmitted beam when m happens to be

even, in which case E{"=E{" and H"=E{"/Z .




