Opti 501 Solutions to Prelim Questions Fall 2010

Problem 1) a) The E- and H-fields of the incident plane-wave are given by

E(r,t)=E{exp[i(k®-r —wt)]; (1a)

H(r,t)=Hexp[i(kV-r —wt)]. (1b)
The dispersion relation in free space is k?= (w/c)®. Therefore,

k" =Kk X+k 7= (w/c)(sin@ X +cos 7). (2)

The incident E-field amplitude, as shown in the figure, is given by

EQ=E, (cosdX—sind7). (3)
It may be readily verified that this E-field satisfies Maxwell’s first equation, namely, vV -E =0,
which is equivalent to k®-E{’=0. As for the incident H-field, Maxwell’s third equation,
Vx E=-0B/ot, yields

ikVxEY=iouHY — (wlc)(sindX+cosd2)xE, (cosdX—sinf2)=awu,H

— H;jj = (E, /Z,)§. (4)

b) The E- and H-fields of the reflected wave are written
E(r,t)=EDexp[i(k™-r —wt)]; (5a)
H(r,t)=Hexp[i(k"”-r-wt)]. (5b)
The reflected k-vector is similar to the incident k-vector, except for the sign of k, that is,
k" =k X—k 7= (wlc)(sin@ X —cosO?7). (6)
The reflected E-field amplitude must cancel out the tangential component of the incident E-field

at the surface of the perfect conductor, as there cannot be any E-fields inside the conductor. We
thus have

" _ S ising3
E, =-E,(cosdX +sinz). (7
As before, it may be readily verified that the above E-field satisfies Maxwell’s first equation,

namely, k®-E{’=0. The reflected H-field is, once again, obtained from Maxwell’s third
equation, as follows:

ikOxED=iouHY — (0lc)(singX —cos§7)xE, (—cosdX—sind7)=wu,HY

- HY =(E,/Z,)9. (8)
c) The rate of flow of energy per unit cross-sectional area per unit time is given by the time-
averaged Poynting vector, namely,



<SO(r,t)>=1Re[EQxHY ]=1Re[E, (cosd X—sin07) x (E, /Z,)§]

Bl Ginos+ cosoz 9
=55 —(sin@X+cosd?). (9)

<SO(r,t)>=1Re[E VxH [=1Re[-E,(cosO X +sin07) x (E /Z,)Y]
CES
=% (sin@x —cos0z7). (10)

The incident and reflected waves are seen to have a time-averaged Poynting vector <S> directed
along the corresponding k-vector. The magnitudes of these Poynting vectors, however, are the
same, namely, |Ep0|2/(220). Therefore, the incident and reflected energy fluxes are identical.

d) The surface-current-density Jy(x,y,t) is equal in magnitude and perpendicular in direction to
the total H-field at the surface of the perfect conductor. Taking into account the right-hand rule
relating the direction of the surface current to that of the H-field, we will have

Iy, t) =[HP(x y,z=0,) + H"(x, y, z=0,1)] X
= 2(E,/Z,)expli (k,x— ot)] X = 2(E, /Z,) expli(@/c) (xsin 6 - ct)] X, (11)

e) The surface-charge-density os(x,Y,t) is given by the discontinuity in the perpendicular
component of the D-field, that is,

o (% y,t)=—¢,[EL(x y,z=0,t) + E"(x,y,z=0,1)]
=2¢,E, sindexpli(kx—wt)]=2¢,E, sin @ exp[i(w/c) (xsin & —ct)]. (12)
f) Substituting in the continuity equation for Js from Eq.(11) and for o5 from Eq.(12), we find
2 lox+ do Jot=[2i(wlc)sinO(E, /Z,) - 2iwe, E, sin @] exp[i(w/c) (xsin 6 —ct)]
=2iw[(cZ)"-¢,]E, sin@exp[i(w/c) (xsin§—ct)] = 0. (13)

The continuity equation is thus satisfied by the induced surface-charge and surface-current.




Problem 2) a) The E- and H-fields of the incident plane-wave are given by
E(r,t)=EQexp[i(k®-r —ot)]; (1a)
H(r,t) = H exp[i(k?-r - ot)]. (1b)
The dispersion relation in free space is k?= (w/c)?. Therefore,
kO =Kk X+Kk,Z = (@/C) (sin @ X+cos 6 ?). 2)
The incident E-field amplitude, as shown in the figure, is given by
Ey =EJY. ©)
It may be readily verified that this E-field satisfies Maxwell’s first equation, namely, V' -E =0,

which is equivalent to k©-E® =0. As for the incident H-field, Maxwell’s third equation,
Vx E =-0Blot, yields

iIK'%ED =iouHY — (wlc)(sin@X+cosd2)xELY = wu HLY

- HY=—(EL1Z)(cosd X -sinb?). (4)
A similar treatment yields for the reflected plane-wave,
k" =k X—k 7 = (wlc) (sin@ X —cos7), (5)
EJ=EJY, (6)
HO = (EY/Z.)(cosd X +sind 7). (7)

As for the transmitted beam, the dispersion relation in the dielectric medium is k?= (w/c)’n*(®);
also, in accordance with Snell’s law, we must have k{” =k and k{V =k’ = 0. Therefore,

kO = kW% +kVZ = (wlc) [sin O X+ n*(w) —sin®0 Z]. (8)
Next, we obtain the transmitted E-field using the continuity of tangential E at the interface:
Eo =(EJ+EQ)Y. 9)

Subsequently, the transmitted H-field is obtained from Maxwell’s third equation, as follows:
KYEY = 0ou HY — (0lc)[sin@ X+ n*(w)-sin*0 Z] xEL Y =wu, HY

S HO= (0 12) [ @) s & sin 7] (10

b) Continuity of the tangential E-field is already assured by means of Eq.(9). The only remaining
constraint involves the tangential H-field, whose continuity equation is written

HO+HO =HO - —(EY/Z)cos@+(EL/Z,) cos@=—(EL/Z,)\n*(w)-sin*0. (11)

The Fresnel reflection and transmission coefficients, defined as p, = EY/ EY and r.=EV/EY,
may now be used in conjunction with Egs.(9) and (11) to yield



~EQcos 0+ p,EYcos0 = - L+ p, ) EY\n(@) ~sin’6 . (12)

Solving the above equation for ps, we find

p- c0s 8 —/ N*(w) —sin’é . (13)
c0s @ + | n*(w) —sin’@

From Eq.(9) and the definitions of the Fresnel coefficients, it is obvious that zs=1+ps; therefore,

.= 2cosd (14)

cosd + A/ n¥(@) —sin?0

c) The rate-of-flow of energy per unit cross-sectional area per unit time for each of the three
plane-waves is given by the corresponding time-averaged Poynting vector, as follows:

<SO(r,)>=1Re[EQxHY =—1Re[ELY x (EY"/Z,)(cos 0 X —sing 2)
[ES)|° o
= 2; (sin@Xx+cosf17). (15)
<SO(r,t)>=2Re[EXxHL T=1Re[ELYx (EL"/Z,)(cos O X +5ing 2)
_Egr g

=27 =2 (sin@X —cosO?) =|p,

<SO(r,t)>=2Re[EPx HO = ~2Re[ESY (Eg)*/ZO)[\/ n*(w)—sin’4 X —sind 7]
[ESI"

—%[sin O X ++/n*(w)—sin’6 7]

1 N@)[ES)
- |T| ZZO

To verify the conservation of energy, consider an incident beam whose cross-sectional diameter
in the xz-plane is D. The footprint of this beam on the x-axis will then be D/cosé, resulting in a
transmitted beam whose cross-sectional diameter in the xz-plane is D(cosé'/cosd). Considering
the various Poynting vectors in Egs.(15)-(17), and the fact that the reflected beam diameter in the
xz-plane remains equal to D, we must show that the following identity holds:

| + (cos @' Icos O) n(w) |z |* =1. (18)

-2 (sin@X —cosf?7). (16)

(sin@ X+cos@'?7). (17)

o,
Substitution from Egs.(13) and (14) into Eq.(18), and noting that n(w)cosé’=vVn*(w)—sin’6,

then yields
[cos @/ n*(w) —sin®]? [\/n () —sin®@ Icos 0] (2 cos 6)? 1 (19)
[cos @ + \/ n*(w) —sin’6 2" [cos 6 + \/ n*(w) —sin®6]? '

The energy fluxes of the reflected and transmitted beams thus add up to that of he incident beam,
proving that electromagnetic energy in the present problem is conserved.




