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Opti 501 Solutions to Prelim Questions Fall 2010 
 
Problem 1) a) The E- and H-fields of the incident plane-wave are given by 

 (i) (i)
o( , ) exp[i ( )];pt tω= ⋅ −E r E k r  (1a) 

 (i) (i)
o( , ) exp[i ( )].pt tω= ⋅ −H r H k r  (1b) 

The dispersion relation in free space is k2= (ω/c)2. Therefore, 

 (i) ˆ ˆˆ ˆ( / ) (sin cos ).x zk k cω θ θ= + = +k x z x z  (2) 

The incident E-field amplitude, as shown in the figure, is given by 

 (i)
oo

ˆ ˆ(cos sin ).p pE θ θ= −E x z  (3) 

It may be readily verified that this E-field satisfies Maxwell’s first equation, namely, 0,⋅ =E∇  
which is equivalent to (i) (i)

o 0.p⋅ =k E  As for the incident H-field, Maxwell’s third equation, 
/ ,t∂ ∂× = −E B∇  yields 

 (i) (i) (i) (i)
o oo o o o

ˆ ˆˆ ˆi i ( / )(sin cos ) (cos sin )p p p pc Eωμ ω θ θ θ θ ωμ× = → + × − =k E H x z x z H  

 (i)
oo o

ˆ( ) .p pE Z=→ H / y  (4) 
 
b) The E- and H-fields of the reflected wave are written 

 (r) (r )
o( , ) exp[i ( )];pt tω= ⋅ −E r E k r  (5a) 

 (r) (r )
o( , ) exp[i ( )].pt tω= ⋅ −H r H k r  (5b) 

The reflected k-vector is similar to the incident k-vector, except for the sign of kz, that is, 

 (r) ˆ ˆˆ ˆ( / ) (sin cos ).x zk k cω θ θ= − = −k x z x z  (6) 

The reflected E-field amplitude must cancel out the tangential component of the incident E-field 
at the surface of the perfect conductor, as there cannot be any E-fields inside the conductor. We 
thus have 

 (r)
oo

ˆ ˆ(cos sin ).p pE θ θ= − +E x z  (7) 

As before, it may be readily verified that the above E-field satisfies Maxwell’s first equation, 
namely, (r) (r )

o 0.p⋅ =k E  The reflected H-field is, once again, obtained from Maxwell’s third 
equation, as follows: 

 (r) (r ) (r ) (r )
o oo o o o

ˆ ˆˆ ˆi i ( / )(sin cos ) ( cos sin )p p p pc Eωμ ω θ θ θ θ ωμ× = → − × − − =k E H x z x z H  

 (r )
oo o

ˆ( ) .p pE Z=→ H / y  (8) 
c) The rate of flow of energy per unit cross-sectional area per unit time is given by the time-
averaged Poynting vector, namely, 
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 (i) (i)
oo o o o

(i) * *1 1
2 2 ˆ ˆˆRe Re (cos sin( , ) ) ( )[ ] [ ]p p p pt E E Zθ θ= × − ×> =< E H /S r x z y  

 
2

o

o

ˆ ˆ(sin cos ).2
| |pE

Z θ θ= +x z  (9) 

 (r) (r)
oo o o

r)
o

( * *1 1
2 2 ˆ ˆˆRe Re (cos( , ) sin ) ( )[ ] [ ]p p p pE E Zt θ θ= × = + ×< > −E H x /S r z y  

 
2

o

o

ˆ ˆ(sin cos ).2
| |pE

Z θ θ= −x z  (10) 

The incident and reflected waves are seen to have a time-averaged Poynting vector < S > directed 
along the corresponding k-vector. The magnitudes of these Poynting vectors, however, are the 
same, namely, |Epo|2/(2Zo). Therefore, the incident and reflected energy fluxes are identical. 
 
d) The surface-current-density Js(x,y, t) is equal in magnitude and perpendicular in direction to 
the total H-field at the surface of the perfect conductor. Taking into account the right-hand rule 
relating the direction of the surface current to that of the H-field, we will have 

 (i) (r ) ˆ( , , 0( , , , ) ( , , 0) , )[ ]y ys x y H x y z t H x y z tt = = + =J x  

 oooo
ˆ2( / ) exp[i( / ) ( siˆ2( / ) exp n )]i ( ] .[ ) pp xE Z k x E Z x ct c tω ω θ −= − =x x  (11) 

e) The surface-charge-density σs(x,y, t) is given by the discontinuity in the perpendicular 
component of the D-field, that is, 

 (i) (r)
o( , ( , , 0, ) ( , , 0,) ), [ ]zs zE x y z t E x y z tx y t εσ = − = + =  

 o oo o 2 sin exp[i( / ) ( si2 sin exp[i ( ) ]] n ) .pp x E c xx ctE k t ε θθ ω ω θε= − −=  (12) 

f) Substituting in the continuity equation for Js from Eq.(11) and for σs from Eq.(12), we find 

 ooo o2i( / )sin ( / ) 2i sin exp[i/ / ( / ) ( sin )][ ]sx s p pc E Z E cJ x t x ctω θ ωε θ∂σ ω∂ ∂ θ∂ = − −+  

 1
oo o2 i ( ) sin exp[i( 0./ ) ( sin )][ ] pcZ E c x ctω ε θ ω θ− − − ==  (13) 

The continuity equation is thus satisfied by the induced surface-charge and surface-current. 
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Problem 2) a) The E- and H-fields of the incident plane-wave are given by 

 (i) (i)
o( , ) exp[i ( )];st tω= ⋅ −E r E k r  (1a) 

 (i) (i)
o( , ) exp[i ( )].st tω= ⋅ −H r H k r  (1b) 

The dispersion relation in free space is k2= (ω/c)2. Therefore, 

 (i) ˆ ˆˆ ˆ( / ) (sin cos ).x zk k cω θ θ= + = +k x z x z  (2) 

The incident E-field amplitude, as shown in the figure, is given by 

 (i) (i)
o o ˆ.s sE=E y  (3) 

It may be readily verified that this E-field satisfies Maxwell’s first equation, namely, 0,⋅ =E∇  
which is equivalent to (i) (i)

o 0.s⋅ =k E  As for the incident H-field, Maxwell’s third equation, 
/ ,t∂ ∂× = −E B∇  yields 

 (i) (i) (i) (i) (i)
o o o o o oˆ ˆˆi i ( / )(sin cos )s s s sc Eωμ ω θ θ ωμ× = → + × =k E H x z y H  

 (i) (i)
o o o ˆ ˆ( ) (cos sin ).s sE Z θ θ= − −→ H / x z  (4) 

A similar treatment yields for the reflected plane-wave, 

 (r) ˆ ˆˆ ˆ( / ) (sin cos ),x zk k cω θ θ= − = −k x z x z  (5) 

 (r) (r)
o o ˆ ,s sE=E y  (6) 

 (r ) (r)
o o o ˆ ˆ( ) (cos sin ).s sE Z θ θ= +H / x z  (7) 

As for the transmitted beam, the dispersion relation in the dielectric medium is k2= (ω/c)2n2(ω); 
also, in accordance with Snell’s law, we must have (t ) (i)

x xk k=  and (t ) (i) 0.y yk k= =  Therefore, 

 (t ) (i) (t ) 2 2ˆ ˆˆ ˆ( / ) sin ( ) sin .[ ]x zk k c nω θ ω θ= + = + −k x z x z  (8) 

Next, we obtain the transmitted E-field using the continuity of tangential E at the interface: 

 (t) (i) (r)
o o o ˆ( ) .s s sE E= +E y  (9) 

Subsequently, the transmitted H-field is obtained from Maxwell’s third equation, as follows: 

 (t ) ( t ) (t ) 2 2 (t ) ( t )
o o o o o oˆ ˆˆ( / ) sin ( ) sin[ ]s s s sc n Eωμ ω θ ω θ ωμ× = → + − × =k E H x z y H  

 (t ) (t ) 2 2
o o o .ˆ ˆ( ) ( ) sin sin[ ]s sE Z n ω θ θ= − − −→ H / x z  (10) 

b) Continuity of the tangential E-field is already assured by means of Eq.(9). The only remaining 
constraint involves the tangential H-field, whose continuity equation is written 

 (i) (r) (t ) (i) (r) ( t ) 2 2
o o o o o o( )cos ( ) cos ( ) ( ) sin .x x x s s sH H H E Z E Z E Z nθ θ ω θ+ = → − + = − −/ / /  (11) 

The Fresnel reflection and transmission coefficients, defined as (r) (i)
o o/s s sE Eρ =  and (t ) (i)

o o/ ,s s sE Eτ =  
may now be used in conjunction with Eqs.(9) and (11) to yield 
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 (i) (i) (i) 2 2
o o ocos cos (1 ) ( ) sin .s s s s sE E E nθ ρ θ ρ ω θ− + = − + −  (12) 

Solving the above equation for ρ s, we find 

 
2 2

2 2

cos ( ) sin
.

cos ( ) sin
s

n
n

θ ω θρ
θ ω θ

− −
=

+ −
 (13) 

From Eq.(9) and the definitions of the Fresnel coefficients, it is obvious that τ s =1+ρs; therefore, 

 
2 2

2cos .
cos ( ) sin

s
n

θτ
θ ω θ

=
+ −

 (14) 

c) The rate-of-flow of energy per unit cross-sectional area per unit time for each of the three 
plane-waves is given by the corresponding time-averaged Poynting vector, as follows: 

 (i) (i) (i) (i)
o o o o

(
o

i) * *1 1
2 2 ˆ ˆ ˆRe Re ( )(cos sin( ) ), [ ] [s s s st E E Z θ θ= × =− −> ×< E H y / xS zr  

 
(i) 2
o

o

ˆ ˆ(sin cos ).2
| |sE

Z θ θ= +x z  (15) 

 (r) (r) (r) (r)
o o o o

r)
o

( * *1 1
2 2 ˆ ˆ ˆRe Re ( )(cos si( )) n, [ ] [s s s sEt E Z θ θ= ×> =< × +E H y / xr zS  

 
(r) 2 (i) 2

2 o

o

o

o

ˆ ˆ(sin c ˆ ˆ(sin cos ).2os )2 | || | | |s
s

s EE
Z Zρ θθ θ θ= −= −x x zz  (16) 

 (t) (t ) ( t ) ( t ) 2 2
o o o o

(t )
o

* *1 1
2 2 ˆ ˆ ˆRe Re ( ) ( )( , ) sin sin[ ] [ [ ]s s s sE E Zt n ω θ θ= × = − × −< > −S xr E H y / z  

 
( t ) 2

2 2o

o

ˆ ˆsin ( ) sin2
| | [ ]sE nZ θ ω θ= + −x z  

 
(i) 2

2 o

o

( ) ˆ ˆ(sin cos ).2
| || | s

s
n E ' 'Z
ωτ θ θ= +x z  (17) 

To verify the conservation of energy, consider an incident beam whose cross-sectional diameter 
in the xz-plane is D. The footprint of this beam on the x-axis will then be D/cosθ, resulting in a 
transmitted beam whose cross-sectional diameter in the xz-plane is D(cosθ ′/cosθ ). Considering 
the various Poynting vectors in Eqs.(15)-(17), and the fact that the reflected beam diameter in the 
xz-plane remains equal to D, we must show that the following identity holds: 

 2 2(cos /cos ) ( ) 1.| | | |s s' nρ θ θ ω τ+ =  (18) 

Substitution from Eqs.(13) and (14) into Eq.(18), and noting that n(ω)cosθ ′=√ n2(ω)− sin2θ , 
then yields 

 
2 2 2 2 2 2

2 2 2 2 2 2

cos ( ) sin ( ) sin /cos (2cos )
1.

cos ( ) sin cos ( ) sin

[ ] [ ]
[ ] [ ]

n n
n n

θ ω θ ω θ θ θ

θ ω θ θ ω θ

− − −
+ =

+ − + −
 (19) 

The energy fluxes of the reflected and transmitted beams thus add up to that of he incident beam, 
proving that electromagnetic energy in the present problem is conserved. 


