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Opti 501 Final Exam (12/15/2020) Time: 2 hours 
Please write your name and ID number on the first page before scanning/photographing the pages. 

Answer all the questions. 

Note: Bold symbols represent vectors and vector fields. 
 
Problem 1) A homogeneous plane-wave of frequency 𝜔𝜔 arrives at the interface between two 
linear, isotropic, homogeneous media at an incidence angle 𝜃𝜃 that is greater than the critical 
angle 𝜃𝜃𝑐𝑐 for total internal reflection. The plane of incidence is 𝑥𝑥𝑥𝑥, the incident beam is 𝑝𝑝-
polarized, and the incidence and transmittance media have permeability 𝜇𝜇𝑎𝑎(𝜔𝜔) = 1, 𝜇𝜇𝑏𝑏(𝜔𝜔) = 1, 
and real-valued permittivity 𝜀𝜀𝑎𝑎(𝜔𝜔) > 𝜀𝜀𝑏𝑏(𝜔𝜔) > 1. The magnetic field within the transmittance 
medium, being oriented along the 𝑦𝑦-axis, is written as 𝑯𝑯(t)(𝒓𝒓, 𝑡𝑡) = 𝐻𝐻0𝑦𝑦𝒚𝒚� exp[i(𝒌𝒌(t) ∙ 𝒓𝒓 − 𝜔𝜔𝜔𝜔)]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a) Write the expressions of 𝒌𝒌(i), 𝒌𝒌(r), and 𝒌𝒌(t) for the incident, reflected, and transmitted 𝑘𝑘-

vectors in terms of 𝜔𝜔, the speed of light in vacuum, 𝑐𝑐, and the refractive indices 𝑛𝑛𝑎𝑎(𝜔𝜔) and 
𝑛𝑛𝑏𝑏(𝜔𝜔) of the two media. 

b) Use the dispersion relation in the transmittance medium to derive 𝑘𝑘𝑧𝑧
(t) as a function of the 

incidence angle 𝜃𝜃, the frequency 𝜔𝜔, the speed of light in vacuum, 𝑐𝑐, and the refractive indices 
𝑛𝑛𝑎𝑎(𝜔𝜔) and 𝑛𝑛𝑏𝑏(𝜔𝜔) of the two media. Explain why 𝑘𝑘𝑧𝑧

(t) should be a negative imaginary 
number. 

c) Confirm that the transmitted wave satisfies Maxwell’s 4th equation, namely, 𝜵𝜵 ∙ 𝑩𝑩(𝒓𝒓, 𝑡𝑡) = 0. 

d) In the absence of free currents (i.e., 𝑱𝑱free = 0), use Maxwell’s 2nd equation, 𝜵𝜵 × 𝑯𝑯 = 𝜕𝜕𝑡𝑡𝑫𝑫, to 
express the electric field 𝑬𝑬(t)(𝒓𝒓, 𝑡𝑡) of the evanescent wave within the transmittance medium in 
terms of the corresponding magnetic field amplitude 𝐻𝐻0𝑦𝑦

(t) and the various system parameters. 

e) Confirm that the transmitted wave satisfies Maxwell’s 1st and 3rd equations as well. 

f ) Show that the time-averaged Poynting vector 〈𝑺𝑺(𝒓𝒓, 𝑡𝑡)〉 of the evanescent wave has a nonzero 
component along the 𝑥𝑥-axis, while its components along the 𝑦𝑦 and 𝑧𝑧 axes are precisely zero. 
Express the 𝑥𝑥-component of the time-averaged Poynting vector in terms 𝐻𝐻0𝑦𝑦

(t) and the various 
system parameters. 

 

evanescent wave 

𝜇𝜇𝑏𝑏(𝜔𝜔) = 1, 𝜀𝜀𝑏𝑏(𝜔𝜔) > 1 

𝜇𝜇𝑎𝑎(𝜔𝜔) = 1, 𝜀𝜀𝑎𝑎(𝜔𝜔) > 1 

𝑘𝑘𝑥𝑥 
𝑘𝑘𝑧𝑧

(t) 

𝒌𝒌(r) 𝒌𝒌(i) × 

∙ ∙ 

𝑥𝑥 𝑦𝑦 

𝑧𝑧 
𝑬𝑬0

(r) 𝑬𝑬0
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𝑯𝑯0
(i) 𝑯𝑯0

(r) 𝜃𝜃 
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2 pts 

4 pts 

3 pts 

3 pts 



2/2 

Problem 2) A large, thin sheet of dielectric 
material has (very small) thickness 𝑑𝑑, relative 
permittivity 𝜀𝜀(𝜔𝜔), and relative permeability 
𝜇𝜇(𝜔𝜔) = 1. The sheet sits in the 𝑥𝑥𝑥𝑥-plane of a 
Cartesian coordinate system at 𝑧𝑧 = 0, where its 
electric dipoles oscillate at a fixed frequency 𝜔𝜔 
along the 𝑦𝑦-axis. The material polarization is 

 𝑷𝑷(𝒓𝒓, 𝑡𝑡) = 𝑃𝑃0𝒚𝒚� cos(𝜅𝜅0𝑥𝑥 − 𝜔𝜔𝜔𝜔 − 𝜑𝜑0), 

where 𝑃𝑃0, 𝜅𝜅0, 𝜔𝜔 and 𝜑𝜑0 are positive real-valued 
constants. The oscillating dipoles radiate a pair 
of 𝑠𝑠-polarized plane-waves into the right half-
space 𝑧𝑧 > 0 and left half-space 𝑧𝑧 < 0, as shown. Aside from their propagation directions, which 
are at ±𝜃𝜃 relative to the 𝑥𝑥-axis within the 𝑥𝑥𝑥𝑥-plane, the two radiated plane-waves are identical in 
every respect. 

a) In terms of 𝜔𝜔, 𝜃𝜃, 𝐸𝐸0 = |𝐸𝐸01| = |𝐸𝐸02|, 𝑐𝑐 = (𝜇𝜇0𝜀𝜀0)−½, and 𝑍𝑍0 = (𝜇𝜇0 𝜀𝜀0⁄ )½, write expressions for 
𝒌𝒌1, 𝑬𝑬1(𝒓𝒓, 𝑡𝑡), 𝑯𝑯1(𝒓𝒓, 𝑡𝑡) and 𝒌𝒌2, 𝑬𝑬2(𝒓𝒓, 𝑡𝑡), 𝑯𝑯2(𝒓𝒓, 𝑡𝑡). 

b) Invoking Maxwell’s 2nd equation, 𝜵𝜵 × 𝑯𝑯 = 𝜕𝜕𝑫𝑫 𝜕𝜕𝜕𝜕⁄ , along with the fact that the thickness 𝑑𝑑 of 
the sheet is very small, show that the spatial frequency 𝜅𝜅0 of the polarization 𝑷𝑷(𝒓𝒓, 𝑡𝑡) along the 
𝑥𝑥-axis is given by 𝜅𝜅0 = (𝜔𝜔 𝑐𝑐⁄ ) cos𝜃𝜃. 
Warning: Do not attempt to relate the 𝐷𝐷-field inside the material medium to the local 𝐸𝐸-field via the permittivity 
𝜀𝜀0𝜀𝜀(𝜔𝜔). This is because the dipoles are being driven by metaphorical “ants” at this point. Later, when an incident 
plane-wave is brought in to drive the dipoles, you will be able to invoke the constitutive relation 𝑫𝑫 = 𝜀𝜀0𝜀𝜀(𝜔𝜔)𝑬𝑬.  

c) Confirm that 𝑬𝑬∥ and 𝑩𝑩⊥ are continuous across the dielectric sheet, then relate the discontinuity 
of 𝑯𝑯∥ to the time-derivative of the 𝐷𝐷-field inside the material. 

d) Let the electric dipoles be driven by the incident 𝐸𝐸-field 
𝑬𝑬0

(inc) exp[i(𝒌𝒌 ∙ 𝒓𝒓 − 𝜔𝜔𝜔𝜔)] of an 𝑠𝑠-polarized plane-wave whose 
𝑘𝑘-vector coincides with 𝒌𝒌1. Inside the dielectric sheet, we have 

 𝑫𝑫(𝒓𝒓, 𝑡𝑡) = 𝜀𝜀0𝜀𝜀(𝜔𝜔)(𝐸𝐸0
(inc) + 𝐸𝐸0)𝒚𝒚� exp[i(𝜅𝜅0𝑥𝑥 − 𝜔𝜔𝜔𝜔)]. 

Invoking 𝜵𝜵 × 𝑯𝑯 = 𝜕𝜕𝑫𝑫 𝜕𝜕𝜕𝜕⁄  to relate the discontinuity of 𝑯𝑯∥ 
across the sheet to the time-derivative of the above 𝐷𝐷-field, 
find the reflection coefficient 𝐸𝐸0 𝐸𝐸0

(inc)⁄ . 

e) Considering that the transmitted 𝐸𝐸-field can be written as 
(𝑬𝑬0

(inc) + 𝑬𝑬01) exp[i(𝒌𝒌1 ∙ 𝒓𝒓 − 𝜔𝜔𝜔𝜔)], find the transmission 
coefficient for the 𝐸𝐸-field. 

Hint: 𝜵𝜵 × 𝑯𝑯 = (𝜕𝜕𝑦𝑦𝐻𝐻𝑧𝑧 − 𝜕𝜕𝑧𝑧𝐻𝐻𝑦𝑦)𝒙𝒙� + (𝜕𝜕𝑧𝑧𝐻𝐻𝑥𝑥 − 𝜕𝜕𝑥𝑥𝐻𝐻𝑧𝑧)𝒚𝒚� + (𝜕𝜕𝑥𝑥𝐻𝐻𝑦𝑦 − 𝜕𝜕𝑦𝑦𝐻𝐻𝑥𝑥)𝒛𝒛�. 
 For the partial derivative 𝜕𝜕𝑧𝑧𝐻𝐻𝑥𝑥, since 𝐻𝐻𝑥𝑥 is discontinuous at 𝑧𝑧 = 0, use 𝜕𝜕𝑧𝑧𝐻𝐻𝑥𝑥 ≅ ∆𝐻𝐻𝑥𝑥 ∆𝑧𝑧⁄ = ∆𝐻𝐻𝑥𝑥 𝑑𝑑⁄ . 
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