Opti 501 Midterm Solutions 10/14/2010

Problem 1) M(r,t)=M,Z Sphere(r/R) is the precise representation of the magnetization
distribution, which, in spherical coordinates, is written M (r,t):MOSphere(r/R)(cosef—siné?é).

10(°M,) 1 J(sin6M,)
r2  or rsiné o0

a) pM (r,t)=-V-M(r,t)= -

bound

__ |\/|orC2059 [2r Sphere(r / R) - r’s(r - R)] + M, Sp:h(_a;e;r 'R (2sin O cos )
si

=M o(r —R)cosé.

This surface-charge-density is positive on the upper hemisphere and negative on the lower
hemisphere, changing continuously from maximum at the north-pole, to zero at the equator, to
minimum at the south-pole.

bound

-1 R
D) 35 (1) = 4 VXM (1, 1) = £ F(r r- mr}
r

or 27 ¢

-1 N

_ KM, { —[Sphere(r/R) —r 5(r — R)]sin 6+ Sphere(r/R)sin 6 } ¢
r

=4 "M, 5(r —R)sin 0.

This azimuthal surface-current-density is zero at the north-pole, increases to a maximum at
the equator, then decreases again to zero at the south-pole.

c) M(k,w) = J'_O; M, Z Sphere(r/R)exp[—i(k - — ot)]drdt

=M,2 [27z5(a))]fri0 I;:O exp(—ikr cos@)2zr’singdrdé

exp(—ikrcosd)|” dr
ikr

= 47r2|\/|02 5((0).[20 |
0=0

_a.2 -1 - (R ;
=87'M_k 5(a))zj'rzor5|n(kr)dr

. 2, ~1 o) -1 R R -1
Integration by partst> =87"M K 0 (w)z [—k r COS(kI‘)‘r:O +Ir=0 k—cos(kr)dr }

=87°M k'5(e) 2 | -k 'Reos (kR) + k *sin(kR) |

=87°M_k°[sin(kR)— kRcos (kR)]5(w) Z.
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Problem 2) a) The large-argument approximate forms of Bessel functions of the first and second

kinds are J (X)~+/2/(7X) cos[x—(nz/2)—(x/4)] and Y,(X) ~+ 2/(zX) sin[x—(nz/2)—(=/4)].

Substitution into the expressions for the E- and H-fields then yields
E(r,t)= —%,uo |, 0, 2¢/(zpw,) [cos(pw,/c—zl4) cos(w,t) + sin(pw,/c—zl4)sin(w,t)]Z

S cos[m (t—plc) + zl4]zZ.

43.p

Ioa)o

H(r,t)= 1 \ 2cl(zpw,) [cos(pw,lc—3xl4)sin(w,t) - sin(pw,/c—3x/4) cos(a)ot)]¢3

_ cos[m(t— plc)+z/4] é.
J4rp

0

b) S(r,t)=E(r,t)x H(r,1) :E—I"zcosz[a)o(t—p/c) +714] p (far field).
oP
_ Lo, o ~ 7, - -
C) (S(r,t)) = 7, (cos[a(t—plo) + /4] p 8/10,0'0 (far field).

The time-averaged energy leaving a cylinder of radius R and height L per second is obtained
by multiplying the above time-averaged Poynting vector at p =R with the surface area 27zRL of
the cylinder. The result, 7Z,12L/(44,), is clearly independent of the cylinder radius, as it should
be, considering that the electromagnetic power radiated by the wire must leave the surrounding
cylinder, irrespective of the cylinder radius.

Problem 3) a) On the cylindrical walls of the cavity, where p =R, the tangential E-field (E; in the
present case) must vanish. Therefore, J(Ra,/c)=0. Acceptable values of Rare thus R.=cx /a,.

b)  PxE(rt)=-@B(r,)lét — —(FE/dp)d=—uH(r t)lct

— FH(r,1)/6t = u'E, (,/6) I (pw,/c) cos(w,t) ¢ = —(@,E, 1Z.) J(pw,/c) cos(w,t)

= H(r,t)=—(E,/Z) (o m,/c)sin(a,t) é.
c) Maxwell’s 1% equation: V-E=0 — OJE/Fz=0. Checks.
19(pHy) ,
p p
- = (BZ2)[WUp)dpa,lc)+(a,/c) I (pajclsin(ol) = —&aE,d(pa/c)sin(a,t)Z
- - (E/Z,)(w,/c)d(pwlc)sin(wt)i=—¢ w,E J(pw,/c)sin(v,t)Z. Checks.

0 0

Maxwell’s 2" equation: V' x H = /D/ét =g 0,E,J(pa,c)sin(w,t)2

Chapter 3, Eq.(41) 1/(Z,¢) =&
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Maxwell’s 4" equation: V-H =0 —  (U/p)JH,/d4=0. Checks.

d) On the cylindrical surface of the cavity E,=0; no surface-charges therefore reside on this wall,
that is, o,(p =R ¢, z,t)=0. The tangential H-field, however, is non-zero, yielding the following

surface-current-density: J(p =R ¢,zt)=-H,(p=R ¢,2t)Z = (E/Z)) J(Rw,/c)sin(a,1) Z.

At the top and bottom surfaces, the perpendicular D-field is &,E,(p,¢,z=%L/2,t)Z. The
surface-charge-density is thus given by o (p, ¢, z=£L/2,t) =F ¢ E,J(p®,/C) cos(m,t). Similarly,
the surface-current-density is related to the tangential component of the H-field, as follows:
J(p,#,2=%LI12,t) = +H,(p, ¢, 2= £LI2,t) p = T(E/Z,) I(p ®,/C) sin(e,1) p.

e) On the cylindrical surface, V-J.=0 and o,=0; therefore, the continuity equation is satisfied.
Also, at the top and bottom flat surfaces we have

7.3 %%ﬁ — 3 (£/2) [W0) Mo, J0) + (/0) & (per )] sin(wy)

= 7 £,0,E,3(p/0)sin(w,),
dojot=te o E d(pw/C)sin(m,t).

Clearly, V-J(r,t) + dor,t)/ct =0 on the flat surfaces as well.
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