Opti 501 2"! Midterm Solutions (11/7/2019) Time: 75 minutes

Problem 1) a) Jereo (T, £) = JoRect(x/W)Rect(y/L)8(2) sin(w,t) .
b) V-J+0dp/dt=0
- dp/dt=—-V-]=-0],/0y = —],Rect(x/W)[6(y + Y2L) — §(y — ¥%L)]6(2) sin(w,t)
- Piree (1 1) = (Jso/ wo)Rect(x/W)[6(y + %2L) — 6(y — %L)]6(2) cos(w,t).

¢) Charges appear only at the front-edge (y = L/2) and rear edge (y = —L/2) of the conductor;
their linear density is J;,/w, [coulomb/meter], and they oscillate in time as cos(w,t). When the
charge-density at the front-edge is positive, that at the rear-edge will be negative, and vice-versa.
The total charge is, therefore, zero at all times.

Problem 2) a) E(r,t) = -V —0A/0t = A,w, Jo(w,r/c) sin(w,t) Z.
B(r,t) = pH(r,t) = VX A(r,t) = —(04,/0r)9 = (A,w,/c) J1(w,r/c) cos(w,t) .

b) Since the tangential component of the E-field at the inner surface of the hollow cylinder
vanishes, the boundary condition associated with E, is satisfied. The tangential H-field
component must be equal in magnitude and perpendicular in direction to the surface current-
density at the inner cylindrical surface. Consequently,

]s(t) = _(Aoa)o/.uoc) ]1 (woR/C) cos(a)ot) Z.

Note that, since the zeros of J,(+) do not coincide with those of J; (+), the H-field at the inner
cylindrical surface and, consequently, the surface current J, do not vanish. Both perpendicular
field components E,.(r = R, @, z,t) and B,.(r = R, ¢, z, t) at the inner surface are zero. The latter
confirms that B satisfies Maxwell’s boundary condition at r = R, and the former indicates that
no electric charges reside on the interior wall of the cylinder. The absence of surface charges is
also consistent with the charge-current continuity equation, as V- J.(r = R, ¢, z,t) = 0.

Problem 3) a) The free current-density is obtained by an inverse Fourier transform, as follows:

Jiree(r, t) = (2m)™* fjooo I,6(k — k)[6(w — w,) — 8(w + w,)]kexpli(k - r — wt)] dkdw
= (2m) I, [exp(—iw,t) — exp(iw,t)] [~ 8(k — ko)k exp(ik - r) dk

= —2i(2m)~*I, sin(w,t) fkozo f:=o 85(k — k) cos @ 7 exp(ikr cos @) (2mk? sin @)dedk

= —2i(2m) 731, sin(wot)?‘f k?6(k — k,) f;o sin ¢ cos @ exp(ikr cos @)de dk

k=0

2i [sin(kr) — kr cos(kr)]

= —2i(2m) I, sin(w, )7 fo k28(k — ko) o dk
= M]grz [sin(k,r) — k,7 cos(k,r)]sin(w,t)7T. 0
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This spherically symmetric current-density flows in the radial direction # and oscillates with
frequency w,. In the limit when r — 0, we have

sin(k,r) — k,r cos(k,r) — [kor —%(kor)3 + ] — k,r [1 —%(kor)2 + ] = Ys(k,r)3. (2)
Consequently, Jeo(r,t) = 0 whenr — 0.

b) wp(k: (‘)) =k ](k, (1)) - p(k: w) = (Ioko/wo)g(k - ko)[6(w - wo) + 6((‘) + (1)0)]. 3)

Inverse Fourier transformation now yields

Prree(T,8) = 2 7 8k — ko) [8(w — @) + 8(w + w,)] explilke - 1 — wb)] dkda

[exp(—iw,t) + exp(iw,t)] f 6(k — k,) exp(ik - r) dk

(211)4
2Igkg cos(wot) cos(wot)

= o fk Of _, 8k — k,) exp(ikr cos ) (2k? sin )depdk

_ 2loko cos(wot) f k28(k — ko) J,_, sin ¢ exp(ikr cos @) dg dk
k=0

@2m)3w

__ 2Igkg cos(wgt) ® 2 _ exp(ikr cos @)|™
= Hokosos(on) j K28 (k — k) 20 |<,,_0 dk

2
= %Wf k sin(kr) §(k — k,)dk = (—k) sin(k,7) cos(w,t). 4)

The charge-density is also spherically symmetric and oscillates with frequency w,. In the
limit when r = 0, we have sin(k,r)/r = k,. Thus, neither the charge-density nor the current-
density have singularities at 7 = 0.

c¢) To confirm the charge-current continuity equation in the spacetime domain, we derive the free
charge-density from the divergence of the current-density, as follows:

V-]free(r,t):a(rzjr) (IO ) [sin(k,r) — k,7 cos(k,7)] sin(w,t)

r2or 2312

( lokg ) sin(k,r) sin(w,t). (5)

2m3r
The continuity equation then yields

0P1reeT, /0 =~V Jie (0, 8) = — (22 sin(ieyr) sin(w,t)

> preer ) = (555 sin(kyr) cos(@yt). (©)

The above equation is seen to be identical to Eq.(4) and, therefore, the charge-current
continuity equation is satisfied
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Problem 4) a) Considering that y = sin¢@ # + cos ¢ @ in the (r,¢,z) cylindrical coordinate
system, we have

M(r,t) = m,Circ(r/R)5(z) cos(w,t) (singp 7 + cos ¢ @).

M) My

b) i) = =V M(r,t) = -2 — 2
= —myg, wmn ¢ 6(z) cos(w,t) — my,Circ(r/R) 6:;);40 §(2) cos(w,t)

= —mg,[r~1Circ(r/R) — §(r — R)] sin ¢ §(z) cos(w,t)
+m,,Circ(r/R)r~1 sin ¢ §(z) cos(w,t)
= m,,0(r — R) sin ¢ 6(z) cos(w,t).

Bound magnetic charges appear only at the disk’s rim (i.e., at r = R and z = 0), with the
largest magnetic monopole density around ¢ = +90°, and no magnetic charges at ¢ = 0° and
180°. The charges oscillate in time as cos(w,t).

M (1) = M(r, 1) /0t = —m,w,Circ(r/R)6(2) sin(w,t).

boun

The bound magnetic current exists everywhere within the disk. The magnetic current-
density is aligned with the y-axis and oscillates in time as sin(w,t).

) P ) =0.

oM, ., - 2 .
JOa,0) = 15V X M(r, ) = — e 4 e gy L [00My)_ 0]

Rodz ugdz | porl ar 2

- _ (’Z) Circ(r/R) cos ¢ 8" (z) cos(w,t) 7

Circ(r/R) sin ¢ 6’ (z) cos(w,t) @

[M cos ¢ 6(z) cos(w,t) — Circ(r/R) cos ¢ 6(z) cos(a)ot)] Z

== (mso) [Circ(r/R)(cos @  —sing §)5'(2) + §(r — R) cos ¢ §(2)Z] cos(w,t).

Y

~

x
d) No electric charges exist in a purely magnetic material. The bound electric current-density
resides primarily on the top and bottom facets of the disk, flowing along +x directions. These
currents, being equal in magnitude and opposite in direction at all times, connect to each other at
the disk’s rim (i.e., where r = R and z = 0). On the rim, the current flows along +z directions,
nearing its peak value around ¢ = 0° and 180°; the current drops to zero at ¢ = +90°. The
bound electric current-density everywhere oscillates in time as cos(w,t).
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