Opti 501 2"! Midterm Solutions (10/26/2017) Time: 75 minutes

Problem 1) The principle behind the method of integration-by-parts is that, since for any pair of
differentiable functions, say, f(x) and g(x), one can write [f(x)g(x)]' = f'(x)g(x) + f(x)g'(x),
the definite integral of f'(x)g(x) over the interval [a, b] can be written as

2 F1@gdx = Fg@IL — [2 F(0g' (Ddx = [f()g(b) — fF(@g@] ~ [ fF(x)g' ()dx. (1)

Application of the method of integration-by-parts to the functions f(x) and &'(x — x,) thus yields

f_oooof(x)S’(x —x,)dx = f(x)6(x — x,)|T8 — f_oooof’(x)5(x — x,)dx. (2)

Now, assuming that f(x)5(x — x,) approaches zero when x — too, we can invoke the sifting
property of §(x — x,) to simplify Eq.(2), namely,

JZ FOO8" (x — x,)dx = —f"(x,). 3)

Equation (3) is the general expression of the sifting property of the first derivative §'(x) of
Dirac’s delta-function 6 (x).

Digression: The assumption that f(x)5(x — x,) approaches zero when x — t+oo is obviously valid
if f(x) - 0 when x — +oo (which is usually the case for functions of practical interest), or if the
delta-function is defined as §(x) = lim,_,., ag(ax), with g(x) being a finite-width function of x
(that is even and has unit area as well), such as g(x) = Rect(x) or g(x) = Tri(x). In such cases,
the width of g(x) is a positive real number w, such that g(x) = 0 for |x|] > w/2. The width of
ag(ax) will then be w/a and, clearly, agla(x —x,)]f(x) is precisely zero when x > x, +
(w/2a) or x < x, — (w/2a), irrespective of how large the value of the parameter @ may be.

One has to be more careful with the assumption f(x)§(x — x,) = 0 when x —» +oo, if f(x)
fails to approach zero when x — +oo, and the function g(x), chosen to represent §(x), happens to
have an infinite extent, e.g., when §(x) = lim,_, a sinc(ax) or §(x) = limy_,¢, a exp(—ma?x?).
Under such circumstances, one might want to focus attention on a large but finite range for the
integration, say, f_LL f(x)é'(x — x,)dx, with L being a large positive number. The relevant entities
appearing on the right-hand-side of Eq.(2) will then be agla(tL — x,)]f(+L), which must
become negligible for sufficiently large a, with the choice of a dictated by the chosen value of L.

Problem 2)
a) p(r,t) = p, [Rect(x/Lx)Rect(y/Ly) — Circ(,/x2 + yZ/R)]Rect(z/Lz).
b) M(r,t) = MO[ZRect(x/L)Rect(y/L) — Circ(,/x2 + yZ/R)]Rect(z/h) cos(w,t) 2.

Problem 3) a) The current-density distribution may be written as a superposition of plane-waves,
as follows:

J(r,t) = W [exp(ik, - ) + exp(—ik, - r)][exp(iw,t) + exp(—iw,t)]
—WJ,lexp(ik, - ) — exp(—ik, - r)][exp(iw,t) — exp(—iw,t)]
= Y(J; + J){expli(k, - r — w,t)] + exp[—i(k, - — w,t)]}
+%4(J1 — J2){expli(k, " + w,t)] + exp[—i(k, - + w,t)]}. (1)
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From the above equation, the Fourier transform of J(r, t) is readily seen to be
](k: w) = 1Al(27t)4(]1 +]2)[5(k - k0)6(w - wo) + 5(k + k0)6(w + wo)]
+W4Q2m)*(Jy = J)[6(k — k) (w + w,) + §(k + k)8 (w — wy)]. 2)

b) The charge-current continuity equation, V-J + dp/dt = 0, yields p(r,t) = — [V -] (r,t)dt
and k- J(k, w) = wp(k, w). Consequently,

V- J(r,t) = Yhik, - (J1 +J2){expli(k, - 7 — w,t)] — exp[—i(k, - 7 — w,t)]}
+Y4ik, - (J1 = J){expli(ky - 7 + wot)] — exp[—i(k, - T + w,t)]}. 3)

p(r,0) = Yhwy k- (J1 + J2){explilk, - 7 — w,)] + exp[—i(k, - 7 — w,t)] }
—Yhw; ko - (J1 — J2){expli(k, - T + w,t)] + exp[—i(k, " T + w,t)]}

= 1/2(‘)0_1’(0 ' [(’1 +]2) COS(kO r— wot) - Ul _]2) COS(kO T+ wot)]‘ 4)

plk,w) =k-J(k w)/w
= %2m)*w;ky - (J1 +J2)[6(k — k)S (w0 — w,) + §(k + ko8 (w + w,)]
14 (2n)*wg ke, - U1 — T8 (k — k)8 (w + wy) + 8(k + ko) (w — wp)]. (5)

¢) Given that k? — (w/c)? is the same for all four Fourier components, all that is needed to find
the potentials is dividing the charge and current densities by k2 — (w,/c)?. We will have

Y0 = (6)

K3 — (wo/c)?]
_ Ho ](r:t) .
A(r) t) - kg _ ((1)0/6‘)2 (7)
d) The electric and magnetic fields are now obtained using the standard formulas, as follows:

0A(r,t)
at
= (_%ié'o_lwo_l[(ll +12) ' ko]ko{exp[i(ko B wot)] - exp[_i(ko r—= wot)]}

T k2 - (wo/c)?

+laie; twy (U1 = J2) - Kolko{explilk, - 1+ wot)] — exp[—i(k, - 7+ w, )]}
+%i.u0wo(]1 +]2){€Xp[i(ko r—= wot)] - exp[_i(ko r—= wot)]}
_%i.uowo(ll —]2){€Xp[i(ko T+ wot)] - exp[_i(ko T+ wot)]})

E(r,t) = -Vy(r,t) —

— [(11+]2) . ko Sin(ko' Tr- (l)ot) - (11—]2) . ko Sin(ko' r+ wot)]ko
2eqwolk3 — (wo/c)?]

_ towo|U1+J2) sin(koy T - wot) = J1— J2) sin(ky" T + wot)] )
2[k2 — (wo/c)?]

E(T t) _ {[(]1"'12) “kolko— (wo/C)Z(h"']z)} Sin(ko' r- wot) - {[(]1‘]2) kolko— (wo/C)z(h—]z)} sin(ko" 1 + wot) .
S 2e9wo[k3 — (wo/€)?]
(3)



UV X J(rt)

B(r,t) =V X A(r,t) = K2 —(wo/0)?

= Tt X (U1 + T expliCky 1 = wot)] = expl=ilk -7 = w,0)]}

+U1 —J2){explilk, - 7 + w,t)] — exp[—i(k, - T + w,)]}} -
MO[(]1+]2) Sin(ko' r- wot) + (]1—]2) Sin(ko' r+ wot)] X ko . (9)
2[k§ ~ (wo/©)?]

It is not difficult to verify that the above expressions for p, J, E, and B satisfy all four of
Maxwell’s equations.

B(r,t) =




