Opti 501 2"" Midterm Solutions (11/8/2016) Time: 75 minutes

Problem 1)
a) M(r,t) = My2 [Rect(x/L,)Rect(y/Ly) — Circ(ry/R)|Rect(z/L,). <|r = /x2+ 2

by p™ (rt)=-V-M(rt) = —0M,/dz
= M, [Rect(x/Lx)Rect(y/Ly) - Circ(r"/R)][6(Z —L,) — 6(z + %L,)].

o) JO () =us'vx M(ro)
= .UalMO{V X [ReCt(x/Lx)ReCt(.V/Ly)ReCt(Z/Lz)i] <—| Cartesian coordinates |
—V x [Circ(r;/R)Rect(z/L,)Z]} < Cylindrical coordinates |

= uy "MoRect(x/L,)[6(y + ¥Ly) — 8(y — Y2Ly)|Rect(z/L,)X
—pg Mo [8(x + 4L,) — 8(x — Y2L,)]Rect(y/Ly,)Rect(z/L,)y
—uy Mo (ry — R)Rect(z/L,)@.

Digression: It is fairly straightforward to evaluate the Fourier transform of the bound charge-
density distribution given in part (b). We will have
pm (k@) = [Z pI () expl—i(k - T — wb)] drdt

bound

= 21tM,o8(w){J". Rect(x/L,) exp(—ik,x) dx [* Rect(y/L,) exp(—ik,y) dy

PS PS © . 2 .
ky = kX + kyy > = [} = Circ(/R) f¢:o exp(—ikyr cos ) 7y d(,bdr”}

X fjooo[d(z —%L,) — 8§(z + YL,)] exp(—ik,z) dz

x . . R
= 2nMod(w) { [, exp(=ilex) dx [277 exp(=ikyy) dy = 2m [y JoUeyr)dry

< Fexp(=iLk,) — expOAiL k)]

= 2nM,y8(w) {2 Si“(;fokx) x 2 Si“(;fLy"y) _ ﬂ Iy (k"R)} [—2isin(¥L,k,)]
x y
: : ok k Ji[RGKZ + KD%Y
= —i4nMy6(w) {LxLysmc ( ) sinc ( ’z’ny) 2nR 1[(k§+—k§)yl/z]} sin(Y.L,k,).

Similarly, the Fourier transform of the bound current-density distribution given in part (c),
may be computed as follows:

JO e w) = [ J©  (r,t) exp[—i(k T — wt)] drdt

= 21y tMyS(w) {i f—LZ,{fz exp(—ik,x)dx ff;[@(y + %L,) — §(y — Y2Ly)] exp(—ik,y)dy

—3 [7 [8Ce + Ly) — 8(x — ¥L,)] exp(—ik x)dxf L2 exp(—ikyy)dy

Il
N>
=

d=z2x7 > —ﬁxf f¢ o T16(n — R)exp(—ikym cosd))r”dr"d(l)}f o 2 exp(=ik,z)dz




= 2mpy *MoS(w){2iLysinc(Lyk, /2m) sin(YaLy k) )X — 2iLysinc(Lyk, /21) sin(YLyk, )y

-2 Xk, frT:O n6(m — R) f;:o cos ¢ exp(—ikym cos cj))dcl)dr"} L,sinc(L,k,/2m)
<<

/_%
= i2nu51MO6(a))Lzsinc(szz/2n){LxLysinc(kax/2n) sinc(Lyky, /2m) (kX — kyY)

¢ =2xk, +2mR J;[R(k2 + k2)*%] ¢} . <k = (2 + k3)*

Problem 2)
ow. op~ |~(Po/3€) (cosOF —sing 0); r<R,
a) E(r) =-Vy(r) = _;?__0 _

26 _
" (PyR3/3gy) (2cosO# +sin68)/r®; r=>=R.

The field inside the sphere may be further simplified and written as E(r) = —(P,/3¢,)2.

b) Péi?md (r) =—V-P(r) = =V - [P, Sphere(r/R)(cos 8 # — sin 6 9)]

_ 9(r?p)  9(sinBPy)
- r2or rsin00o0

_ (PO cos 9) d[r? Sphere(r/R)] n [POSphere(r/R) dsinZ 0

T2 ar rsin@ 00

_ _ Pgcos 0[2r Sphere(r/R) — r? 6(T—R)] n 2PySphere(r/R) cos 6

= = Py6(r — R) cos 6.
Because of the §-function appearing in the above charge-density profile, we can state that

the sphere has a bound surface-charge-density o,(r = R, 8, ¢) = P, cos 6. Note that the surface-

charge-density is positive on the upper hemisphere and negative on the lower hemisphere.

c¢) The parallel (or tangential) component of the E-field at the surface of the sphere is Eg, which
is found in (a) to be equal to (Py/3¢y) sin 8 immediately inside as well as immediately outside
the sphere. The continuity requirement for the tangential E-field is, therefore, satisfied.

The perpendicular component of the D-field inside the sphere is given by
D, = gyE, + B. = =%P, cos 8 + Py cos 8 = 24P, cos 6.

Outside the sphere and immediately above the surface, we have D, = gyE, = %3P, cos 6.
Therefore, in the absence of free surface-charge-density, the continuity of D, is confirmed.

If, instead of D, we examine the perpendicular component of the E-field, we find, at the
surface of the sphere, the following discontinuity in E, :

E.(r=R%,0,9¢) —E.(r=R",0,¢) = (2Py/3&,) cos0 — (— Py/3&,) cos 8
= (Py/&,) cos 6.

This, however, is precisely equal to the bound surface-charge-density oy = P, cos 8 found in

part (b), divided by &y, which is, once again, consistent with the boundary condition derived

from Maxwell’s 1* equation, V - E(r,t) = g5* pt(:t)al (r,t).




Problem 3) a) For an electromagnetic field to be trapped inside a perfectly electrically
conducting cavity, the tangential component of the E-field must vanish on all the internal
surfaces. Therefore,

E,(ny=R,p,z,t) = Ey Jo(woR/c) sin(wet) =0 - Jo(woR/c) = 0. (1)

In words, the cylinder radius must be chosen such that wygR/c = 2nR /A, is a zero of the
Bessel function J,(+).

b) A surface charge-density exists on the top and bottom facets of the cylindrical can. Invoking
Maxwell’s first boundary condition, the surface charge-density must equal the perpendicular
component of the D-field, namely,

Top and bottom caps: os(r, d,z = £L/2,t) = FeoEy Jo(weny/c) sin(wyt). 2

c¢) A surface current-density J¢ exists wherever the H-field happens to have a component parallel
to the surface, that is,

Cylindrical wall: Js(y =R, ¢,2z,t) = —(Ey/Zy) J1(woR /) cos(wyt) Z. 3)
Top and bottom caps:  Js(ry, ¢,z = £L/2,t) = +(Ey/Zy) J1(wery/c) cos(wyt) 7. 4)

Note that at 7, = R, the current exits the upper cap and enters the cylindrical wall. The
opposite happens at the bottom cap, where the current arrives from the cylindrical wall, then
enters the cap from the rim located at rj; = R.

d) On the cylindrical facet, the charge-density is zero, and so is the divergence of the surface
current-density J¢ given by Eq.(3). This confirms that, on the interior cylindrical wall, the
continuity equation is satisfied.

At the top and bottom caps we have

7 Js(, b2 = £L/2,6) = £(Bo/Zo) LI cos(wyt)

07

= +(Ey/Z,) J1(wory/€) + (wory /)] (wory/C)

T

= o/ Zy) (LMD cos(wt)

cos(wyt)

= Fe&oEowo Jo(wory/c) cos(wt). (5)
Clearly, V- J4 + do,/0t = 0; see Egs.(2) and (5).

Digression: Below we confirm that the E and H fields given in the statement of the problem do
in fact satisfy Maxwell’s equations.

1) V-D=¢,0E,/0z=0

2) VxH-= w? = (Ey/Z,) Mcos(wot)ﬁ

707 )07



3)

4)

= (Ey/Zy) Ji(wory/c) + (wory/c)J1(wory/c)

cos(wot) Z
Ll

= (Ey/Zo) (wori/c)Jo(wori/c)

T

= goEqwq Jo(wory/c) cos(wot) 2 = gy OE /0t

cos(wyt) Z

VXE= —(6E2/6r")<7> = —Ey(wo/c) Jo(wery/c) sin(wgt) ¢ <
= Eo(wo/c) J1(wory/c) sin(wot) ¢ = —py OH/0t.

Jo(x) = —J1(x)
Chap.3, Eq.(39)




