Opti 501 2" Midterm Solutions 10/24/2013

Problem 1) The function f(t) = cos(wyt) must first be multiplied by exp(—a|t|) in order to
prevent its Fourier integral from diverging as t — +oo. Eventually, however, we must let ¢ — 0,
to lift this artificial restriction on the magnitude of f(¢t).

F(w) =lim,_, foo cos(wyt) exp(—alt|) exp(iwt) dt
= hma_mf Yalexp(iwgt) + exp(—iwyt)] exp(—alt|) exp(iwt) dt
= ¥ lim,_, {f_ooo[exp(iwot) + exp(—iwgt)] exp(at) exp(iwt) dt
+ fooo [exp(iwot) + exp(—iwyt)] exp(—at) exp(iwt) dt}
= ¥ lim,_,, {f_ooo exp{[a + i(w + wy)]t}dt + f_ooo exp{[a + i(w — wy)]t} dt

+J, exp{—[a — i(w + wo)]t}dt + [,” exp{—[a — i(w — w,)]t} dt}
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The area under each of the two functions in the preceding expression is equal to m, as may be
readily verified:
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In the limit when a — 0, the first of the above functions approaches nd(w + w,) while the
second one approaches md(w — w,). Consequently, F(w) = w6 (w + wy) + 18 (w — wy).

Problem 2) a) The symmetry of the function f(x) allows us to integrate over the interval (0, @),
then multiply the result by 2 to find the area under the function, that is,
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Since f(x) is tall, narrow, symmetric around x = 0, and has unit area, in the limit when a = 0,
the function f(x) approaches a delta-function.



b) Differentiation of f(x) with respect to x yields
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4/a®)[1+ (x/a)], —a < x < —Y%a; L <9142
f'(x) =1 —4x/a3, — Yha < x < Ya;
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The area under each half of the function f’(x) is 1/a. If the —a —Laf\%a [a
product f'(x)g(x) of an arbitrary function g(x) with f'(x) is
integrated over x, the value of the integral on the left-hand side ’
of the x-axis will be a~1g(—%a), while that on the right-hand —2la’— +

side will be —a~1g(%a). The total integral of f'(x)g(x) will
thus be [g(—%a) — g(Ya)]/a, which approaches —g'(0) as @ — 0. This is the expected sifting
behavior of §'(x). Therefore, in the limit when @ — 0, the function f'(x) approaches &' (x).

c) Differentiating f'(x) with respect to x, we find
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The area under each segment of the function f"(x) is | ;

2/a?. If the product f”(x)g(x) of an arbitrary function g(x) | .
with f”(x) is integrated over x, the values of the integral — < -4
over the four segments of f"(x) will be, from left to right,
2/a*)g(—%a), —(2/a?)g(—%a), —(2/a?)g(Yaa) and (2/a?)g(34a). The total integral of
" (x)g(x) will thus be
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Since this is the expected sifting behavior of §”(x), we conclude that, in the limit when a — 0,
the function f” (x) approaches 6" (x).

Problem 3) The Fourier transform of the charge distribution of the ring is straightforwardly
evaluated, as follows:

Prree(l, @) = [° prree(r, #,2,t) exp[—i(k - 7 — wt)] drdt

=", 0 [Circ (;—i) — Circ (;—D] 8(z) exp(—iky - ry) exp(—ik,z) exp(iwt) drdt
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= (2m)?0, S (w)kj? fkk"Rl x Jo(x) dx

= (2m)?0y §(w)ky [Ry J1(kyRy) — Ry J1 (kyRy)].

Problem 4) a) Transforming the equations to the Fourier domain, we find

igok - E(k, ) = pirec(k, w) — ik - P(k, w), (1a)
ik X H(k, w) = Jtree(k, w) — iwP(k,w) — ie,wE(k, w), (1b)
ik X E(k,w) = ioM(k, w) + iu,wH(k, w), (1c)
iu k- H(k, w) = —ik - M(k, w). (1d)

b) Cross-multiplying k into Egs.(1b) and (1c) yields
kX [kXxX H(k,w)] = —ik X Jiree(k, w) — wk X P(k, w) — e;wk X E(k, w), (2a)
k X [k X E(k,w)] = wk X M(k,w) + u,wk X H(k, w). (2b)

The above equations may now be simplified if k x E from Eq.(1c) and k X H from Eq.(1b) are
substituted into Eqgs.(2a) and Eq.(2b), respectively, and also if the vector identity A X (B X C) =
(A-C)B — (A - B)C is used to simplify the left-hand sides of Eqgs.(2a) and (2b), as follows:

[k-H(k,w)]k — k*H(k, w) = —ik X Jgoo(k, w) — wk X P(k, w)
—g,w?[M(k,w) + u H(k, )], (3a)
[k - E(k, w)]k — k*E(k, w) = wk x M(k, ®)—iftow]free (k, )
—pow?[P(k, w) + £,E(k, w)]. (3b)
Next, we substitute k - H from Eq.(1d) into Eq.(3a), and k - E from Eq.(1a) into Eq.(3b) to obtain
[((w/c)? — k?]H(k, w) = —ik X Jee (K, w) — wk X P(k, )
—gow?’M(k, ) + uyt[k - M(k, w)]k, (4a)
[(w/c)z - kz]E(k: w) = iec;lpfree(k; w)k—ip,wffree (k, w) + wk x M(k, w)
—pow?P(k,w) + 5 [k - P(k, w)]k. (4b)
The final solutions for the electromagnetic fields E(k, w) and H(k, w) are thus given by

ikX]free(k,w)+wkxP(k,w)+eqw?M(k,w)—pg  [k-M(k,w)]k

H(k,w) = 2 (w]0)? ,

(5a)

_isglpfree(k:w)k'l'iﬂow]free(kjw)"'/iowzp(k:w)_gal [k-P(k,w)]k—wkxM(k,w)
k2—(w/c)? '

E(k,w) = (5b)

It is not difficult to verify that the above expressions for E and H fields are the same as those
obtained using the bound electric charge and current densities — with or without the introduction
of scalar and vector potentials.




