
 1

Opti 501 1st Midterm Solutions 9/27/2011 
 
Problem 1) From Maxwell’s 4th equation, we find the bound magnetic charge-density to be 
given by ( )

bound ( ).mρ = − ⋅M r∇  Take a small pillbox and place it anywhere inside the sphere. The 
magnetization entering the box will be equal to that leaving the box 
and, therefore, the divergence of M(r) = Mo z^ will be zero everywhere 
inside the sphere. The only points where the divergence will be non-
zero are at the surface of the sphere. The figure shows a small, thin 
pillbox placed at (r = R,θ,φ). Let A and h denote the base area and 
height of the pillbox, respectively; both A and h could be as small as 
desired. The flux of M entering from the bottom of the pillbox is 
Mo Acosθ, and this is the only contribution to the integral of M(r) over 
the pillbox surface, provided that h is much small than the pillbox diameter. The divergence of M 
at (r = R,θ,φ) is thus given by −Mo Acosθ/(Ah) in the limit of small A and h. Therefore, 

( )
obound( , , ) cos / .m R M hρ θ φ θ=  Since the charges are confined to the surface, we should use the 

surface-charge-density ( ) ( )
bound bound

m mhσ ρ=  instead of the volume charge-density. Consequently, 
( )

obound( , , ) cos .m R Mσ θ φ θ=  
To determine the bound electric current-density ( )

bound
1

o ( ),e μ−= ×J M r∇  we use a small 
rectangular loop (length = ,  width = w) at various locations within and on the surface of the 
sphere in order to calculate the curl of M. For all locations within the sphere and for all 
orientations of the loop, the integral of M(r) around the loop turns out to be 
zero. When the loop is placed on the surface at (r = R,θ,φ) and oriented 
perpendicular to ˆ,φ  as shown, the line integral on the lower leg of the loop 
will be nonzero o( sin ).M θ  The curl of M(r) will then be nonzero, as the 
other legs do not contribute to the integral, provided that .w <<  The curl 
will then be given by o

ˆsin /( )[ ]M wθ φ  in the limit when  and w both 
tend to zero. The bound current-density at (r = R,θ,φ) is thus given by 

( )
bound

1
o o

ˆ( sin / ) .e M wμ θ−=J φ  Since the current is confined to a thin layer on the surface, we could 
use the surface-current-density ( ) ( )

s-bound bound
e ew=J J  instead of the bulk current-density. 

Consequently, ( )
s-bound o

1
o

ˆsin .e Mμ θ−=J φ  
 
Problem 2) 

a)   (total) (inc) (ref )
o oˆ ˆcos[( / ) ] cos[( / ) ] 2 sin( / )sin( ).{ }E c z t c z t E z c tω ω ω ω ω ω= + = − − + =E E E x x  

( total) (inc) (ref )
o o o oˆ ˆ( / ) cos[( / ) ] cos[( / ) ] 2( / ) cos( / ) cos( ).{ }E Z c z t c z t E Z z c tω ω ω ω ω ω= + = − + + =H H H y y  

b) The E-field vanishes where sin(ω z /c) = 0, that is, z = 0, −λ/2, −λ , −3λ/2,… . Here λ = 2πc/ω. 
 The H-field vanishes where cos(ω z /c) = 0, that is, z = −λ/4, −3λ/4, −5λ/4,… . 

c) Energy density of the E-field: o o
2 2 2
o

21
2 | | 2 sin ( / )sin ( ).E z c tε ε ω ω=E  

 Energy density of the H-field: o o
2 2 2
o

21
2 | | 2 cos ( / ) cos ( ).E z c tμ ε ω ω=H  
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d) (total) ( total)
o o
2 ˆ( , ) ( / ) sin(2 / )sin(2 ).z t E Z z c tω ω= × =S E H z  

The z-dependence of the Poynting vector, sin(2ω z /c) = sin(4π z /λ), reveals that S(z, t) is zero 
at all integer multiples of λ /4. Therefore, where either the E-field or the H-field of the standing 
wave has a node, no energy flows at all. The energy only flows along z in between these adjacent 
nodes, which are separated by intervals of Δ z = λ /4. The time-dependence of the Poynting 
vector, sin(2ω t), shows that energy flow along z changes direction at twice the optical frequency 
ω. There are periodic instants when the energy is entirely in the E-field, followed by instants 
when the energy is entirely in the H-field. In between, the energy moves either slightly to the 
right or slightly to the left along z, in order to maintain the E- and H-field energy profiles found 
in part (c). 
 
Problem 3) 

a) At the mirror surface, we have z = 0 and the tangential E-field is along the x-axis. Adding the 
x-components of the incident and reflected E-fields, we find 

o o
(inc) (ref ) cos exp{i( / )[(sin ) ]} cos exp{i( / )[(sin ) ]} 0.x xE E E c x ct E c x ctθ ω θ θ ω θ+ = − − − =  

Since the fields inside the perfectly-conducting mirror are zero, the continuity of the tangential 
E-field requires Ex

(total) at the front facet of the mirror to vanish. This is indeed the case for the 
tangential component of the E-field at z = 0. 
 
b) At the front facet, we have z = 0 and the tangential H-field is along the y-axis. Adding the y-
components of the incident and reflected H-fields, we find 

(inc) (ref )
o o .2( / ) exp{i( / )[(sin ) ]}y yH H E Z c x ctω θ+ = −  

Since the H-field within the perfectly-conducting mirror is zero, the discontinuity of Hy must be 
accounted for by the presence of a surface-current-density whose magnitude is equal to Hy at the 
mirror surface, and whose direction, while perpendicular to the H-field, follows the right-hand 
rule. We will have 

o o ˆ( , , 0, ) 2( / ) exp{i( / )[(sin ) ]}.s x y z t E Z c x ctω θ= = −J x  

c) At the front facet, we have z = 0 and the perpendicular E-field is along the z-axis. Adding the 
z-components of the incident and reflected E-fields, we find 

o
(inc) (ref ) 2 sin exp{i( / )[(sin ) ]}.z zE E E c x ctθ ω θ+ = − −  

Since the E-field within the perfectly-conducting mirror is zero, the discontinuity of Ez must be 
accounted for by the presence of a surface-charge-density whose magnitude is equal to εoEz at 
the mirror surface. We find 

o o( , , 0, ) 2 sin exp{i( / )[(sin ) ]}.s x y z t E c x ctσ ε θ ω θ= = −  

d) Charge-current continuity equation: 

o

o o

o o

o o

/ / / 2i( / )sin ( / ) exp{i( / )[(sin ) ]}

2i sin exp{i( / )[(sin ) ]}
2i ( ) sin exp{i( / )[(sin ) ]} 0.

s s s x st J x t c E Z c x ct
E c x ct

E c x ct

∂σ ∂ ∂ ∂ ∂σ ∂ ω θ ω θ

ωε θ ω θ
ω ε ε θ ω θ

⋅ + = + = −

− −
= − − =

J∇

 


