Opti 501 Final Solutions 12/14/2010

Problem 1)

a) Incident beam:
k'=(w/C)(sin Gy X —cos 6,2), (1a)
E. = E (cos 0, X +sin6,2), (1b)
H =k x E}/(u,0) =~ (E}/Z,) . (lc)
E'(r,t)= E;(cos 0, X +sin G,2)exp[i(w/c)(Xsin 6, — zcos G, —ct)], (1d)
H'(r,t)y=—(E,/Z,) § exp[i(w/c)(Xsin §, — zcos §, —ct)]. (le)

Transmitted beam:

k'=(nw/c)(sin, X —cos &, 7), (2a)
E,=E,(cosdy X +sin 6 2), (2b)
H=K'x E/(u,u)=—(NE}/Z,)3, (20)
E'(r,t) = E (cos g, X +sind}, 2)exp[i(@/C)(xnsindy—zncos g, —ct)], (2d)
H'(r,t)=—(nE,/Z))§ exp[i(w/c)(xnsind,—zncos d; —ct)]. (2e)

b) At the z=0 interface we must have sind,=nsind; (Snell’s law), so that the exponential
factors will match. Also, continuity of the tangential E-field, Ey, yields E; cos @y = E cos by,
while the continuity of the tangential H-field, Hy, yields E; :nE;. Combining the last two
equations, we find ncos&,=cos@,. This equation together with Snell’s law may now be solved

for the two unknowns, 6 and &g, yielding tanf,=n and tan&,=1/n. The transmitted E- and
H-fields may now be written as follows:

E'(r,t)= E; (cos @, X +n~*sinG,2) exp[i (w/c)(Xsin @, — zn*cos §,—ct)], (3a)
H'(r,t)=—(E,/Z,)§ exp[i(w/c)(Xsinf, — zn’*cos ,—ct)]. (3b)
¢) In the incidence medium, D'(r,t) =& E'(r,t). Therefore, at z=0" we have
Di(x,y,z=0",t)=¢, E;(cos O, X +sin &,2) exp[i(@/C)(Xsin G, —ct)]. 4)
In the dielectric medium, however, D'(r,t) =g ,¢E (r,t) = g, n’E (r,t). Thus at zZ=0" we have
D'(x,y,2=07,t) = &,n’E; (cos J, X+ N*sin G, 2) exp[i (w/C) (X sin G~ ct)]. (5)

Clearly then D!(X,y,z=0",t)=Di(X,y,z=0",t).
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i]2
d) Incident beam: <S'(r,t)> =%Re[Ei(r,t)x Hi*(r,t)] = %(sin O, X —cos 0,2). (6)
E I

Transmitted beam: < S'(r,t)> = %Re[ E'(r,t)x H"(r,t)] = (sind, X—cos&,2). (7)

o

Note that both Poynting vectors are aligned with their corresponding k-vector. However,
since E; = nE;, the time-averaged Poynting vector of the incident beam is n times greater than
that of the transmitted beam. Nevertheless, the cross-sectional areas of the two beams are in the
ratio of cos@g/cosfs, which is also equal to n. Therefore, the rate-of-flow of energy per unit time

along the propagation direction is the same for the incident and transmitted beams, as required by
energy conservation.

e) In the absence of free charge, Maxwell’s 1* equation is ¥ - D(r,t) = 0. Since D=¢,E+P and,
by definition, o (r,t)=-V-P(r,t), we have &V -E(r,t)=p (r,t). Thus the discontinuity

of &E; at the z=0 interface is equal to the bound surface-charge-density. Using Egs.(1d) and
(3a) we find

0% Y, 2=0,1) = ,[E, (X, Y,2=0",1) - E;(X,¥,2=0,1)]

=¢,(1-n?) E; sin &, exp[i(@/C)(Xsin &, — ct)]. (8)

Problem 2)
a) Incident beam: k' =—(w/0)2; E!=E! %; H!=-(E./Z)Y.
E'(r,t) = E\, Xexp[i(w/c)(—~z—cb)]; (1a)
H(r,t) = - (EL,/Z,) § expli(e/c)(~z—ct)] (1b)
b) Reflected beam: k" = (w/0)Z; E;=E, X; H,=(E_ /Z)Y.
E'(r,t)=E, Xexp[i(w/c)(z—ct)]; (2a)
H(r,t) = (EL/Z,) § expli(w/c)(z—ct)]. (2b)

¢) Beams inside dielectric: k'=+(w/c)(n'+in")Z; E!=+E _X; H,=(n"+in")E_/Z)¥.
Note that we are dealing here with two plane-waves. The one propagating upward is given the
plus sign, whereas that moving downward has the minus sign. The E-field amplitudes of these
two beams have equal magnitudes and opposite signs, the reason being that, at the interface with
the perfect conductor at z=0, the total tangential E-field must vanish. As usual, the H-field
amplitude is derived from Maxwell’s third equation, Kx E_ = @H_. The total fields inside the

dielectric layer are obtained by superposing these two plane-waves, as follows:
E'(r,t)=E, Xexp{i(w/c)[(n'+in")z—ct]}—E, Xexp{i(w/c)[-(n'+in")z—ct]}

=E, X[exp (—n"wz/c)exp(in'm z/c) —exp (N"w Z/C) exp(—in' @ z/C) | exp (- iwt); (3a)
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HY(r,t) = (n'+in")(EL /Z.) § [exp (-Nn" @ Z/C) exp(in' @ Z/c)
+exp (n"wz/c)exp(—in'w z/c) | exp(—iwt). (3b)

d) Continuity of tangential E- and H-fields at z=d, the interface between free-space and the
dielectric, yields

E. exp(-iwd/c) + E., exp(iwd/c)
=E,_[exp(-n"wd/c) exp(in'wd/c) — exp (N"wd/c)exp in'wd/c)]; (4a)

—E, exp(—iwd/c)+ E}, exp(ind/c)
=(n"+in")E_[exp (-n"wd/c) exp(in'wd/c) + exp (n"wd/c)exp —in'wd/c)].  (4b)

Subtracting Eq.(4b) from Eq.(4a) results in the cancellation of the term containing E, , yielding
the following relation between the incident and transmitted E-field amplitudes:
Ev 2exp(—-iwd/C)

=X - (5
E,, (I-n'-in")exp(—n"@d/c)exp(in'wd/c)—(1+n'+in")exp (N"wd/c)exp (—-in'@wd/C) ©®)

Substituting the above expression into Eq.(4a) then yields the ratio of reflected to incident
E-field amplitudes as

E?" =exp(-i2wd/C)

Xo

y (I+n'+in")exp (-n"@d/c) exp(in'wd/c) - (1-n"—in" ) exp (N""wd/C) exp (-in'wd/c) | 6)
(I-n"—in")exp (-N"wd/c) exp(in'wd/c)— (1+Nn'+in" )exp (N"@d/C)exp (—in'w d/C)

¢) The time-averaged Poynting vector at z=d is given by
<S(x,y,z=d",t)> :%Re[E Y%y, z=d,t)yx H"(x,y,z=d,t)]
2 A
| EZZ| Re{(n'—in")[exp(—Nn"wd/c)exp(in' wd/c) — exp(n" wd/c) exp(-in' wd/c)]
x[exp (-n"wd/c)exp(—in' @d/c) +exp(n"wd/c)exp(in' wd/c)]} .
_ B2
2Z

0

_ B2

—— ~ Re{(n'—in")[exp(-2Nn"wd/c)—exp(2Nn"wd/c) +exp(i2n' wd/c) —exp(-i2n' wd/c)]}

— ~ Re{(n'—in")[-sinh(2n"wd/c) +isin(2n'wd/c)]}
IEL)P . . . R
=—Z—X°[n sinh(2n"wd/c) —n"sin(2N'w d/c)]?Z. (7)

(4]
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Problem 3)

a) pp=0 — ga\/,ub gb—(ckx/a))2 = e:b\/,uaga—(Ckx/co)2 where ky=(w/C) X//,E sin@gp. Therefore,
& HbEb—HaEn sin? Osp) = e ( HaEa—UaEn sin’ Osp) — sin? Opp=(&v/ ta) (Eaftr—Eb a)/( &l &)
— cos’ Opp=1—- sin’ Opp=(&al o) (Ea tta— Eb b))/ ( &l - ebz)

—  tan’Opy= (&b/x) (& to— &b 1)/ (Ea fla— Eb ).

b) ps=0 — ,ua\/m = ,ubx/m where ky=(w/C) \//,E sinfps. Therefore,
e (f1 €= Lo &aSIN” Ops) = 11" (UaEa— HaEaSIN Os) — SN’ = (n/€2) (fta Eb— Lo &a)/ (s’ — 1)
— €08 Ops=1—sin’Op,= (Lta/ €2) (Ea ta— e;"b,ub)/(,ua2 —,ubz)
— tan’ O =—(1p/ 11a) (Ea o= Eb a) | (Ea fa— Eb ).

c¢) In the above expressions for tan’ Ogp and tan’ Ogs, the second and third terms are identical. As
for the first terms, the signs of &, and x, are generally the same, and so are the signs of &, and p.
Therefore, the signs of tan’ Ogp and tan® Ogs are going to be opposite, that is, if one is positive, the

other will be negative. Since tangent-squared needs to be positive, it will be impossible to have
Brewster’s angles for both p- and s-light.
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