Opti 501 Final Exam Solutions 12/12/2012

Problem 1) a) We use the dispersion relation to find £ in terms of k,, @, and material parameters
for each plane-wave. We then proceed to relate the various components of the £- and H-fields to
each other and to the k-vector through the use of Maxwell’s equations. The dispersion relation is

K =k +k} +k! =(0lc) u(w)s(w) — k, = J_r\/ (w/e)’ u(w)s(w)—k; —k; . (1)

Considering that k,= 0, and using the relevant parameters for each of the two media, we find

K =~(@/ O (@) e (@)~ (ck, /o) ; (2a)
The choice of sign for the square root must
K =(w/c e (o) —(ck o) - be made such that the imaginary part of £, is 2b

:=( )\/ Hl@)z @) ( JO) positive for upward-propagating waves, and (2b)
negative for downward-propagating waves.

ke =~/ o) u(@)e(@)—(ck jo) (2¢)

For p-polarized light, Maxwell’s 1 equation yields
E;p = _(kx /k;)E)lcp
V-D=0 —» k-E, =0 — kE +kE ,=0 — E;p =—(k, /k;)E;p 3)
E;p = _(kx /k;)E)tcp
As for the H-field of the various p-polarized beams, we use Maxwell’s 31 equation to write
VxE=-0Blot — kxE=uu@oH — kE  —kE =uuo)oH,,
- kE,, +(k;/k)E, = pu(@oH,, — (ki+k)E =y po)okH,,
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For the s-polarized light, we use Maxwell’s 4t equation to relate H, to H,, as follows:
H'=~(kJKDH
kkH=0 —> kH, +kH, =0 — <H., =—(k,/k))H, (5)
H y==(k, Jk)H

The E-field of the s-polarized beam is readily obtained from Maxwell’s 2™ equation, that is,



VxH=0D/dt — kxH=-¢¢e(@oE — kH —-kH =-¢e@)0E,
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b) For p-polarized light, the continuity of E, and D. at the z=0 interface yields

E;p +Ey, =E,, R E;p +Ey, =E,, (7a)
D;p +D,=D!, gogaE;p +&,6,EL, = 6,6,EL, (7b)

Use Eq.(3) in Eq.(7b), then
substitute for £, from Eq.(7a).

> (&k, | KDE,, +(&,k, [ KDEY, = (epk, [ K(E,, +EY,)

— [ /KD~ (8, kDIEL, =[(8, / k)~ (&, | KDIEL,

L Ey, (5, k) —(5, 1K) e,k —g.kL

Use Egs. (2a,2b) to set k' =—k.'. |—> =P _ = | (®)
Pr Ey, (s/k)—(g/ky) e,k +ekl
The transmission coefficient 7, is found from Egs.(7a) and (8), as follows:
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c) For s-polarized light, the continuity of H, and B at the z=0 interface yields
B +B =Bl Mot HLs + po i HE = g1, HY (10b)

Use Eq.(5) in Eq.(10b), then i i _ t i

substitute for H'., from Eq.(10a). - (/uakx /k; )H)lcs + (,uakx /k; )Hyrcs - (,ubkx /kz )(H)lcs + H)rcs)
= [t D) = Caty M s = [ty 1K) = (pty RV
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Use Egs. (2a,2b) to set k. =—k.'. |— = (o [ K2) = (g ) _ aks — ik (11)

HY o (KD = (g 15D gkt + gkl



The Fresnel reflection coefficient for s-polarized light is defined as p, = E} / Eiys. From Eq.(6),

it is clear that p, =—H" / H' . Therefore,
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The transmission coefficient for the H-field is found from Eqs.(10a) and (11), as follows:
. . 2u. k!
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The Fresnel transmission coefficient for s-polarized light, being defined as 7z, = E)t, o/ E)i)s, may

now be found from Eq.(6) as 7,= (,ubk; JukHH' /H! . Consequently
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Problem 2) a) Within the incidence medium, the x-component of the k-vector is given by
k.=(w/c)nsin@'. The Fresnel transmission coefficient 7, thus yields the E-field amplitude
transmitted into the free-space region below the prism, as follows:

2ﬂb\/ﬂa5a—(0kx/a’)2 B 2cos 6’
yb\/,uaga—(ckx/a))2 +ua\/,ubgb—(ckx/a))2 cosf'+ i\/ sin’@'—sin’6,
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Note that the z-component of the evanescent field’s k-vector, a purely imaginary entity, is
given by

ki =— (w/c) =k} =—(w/c)N1-n*sin> 0 =—i (a)/c)n\/sinzﬁi —sin’6, . 2)

The evanescent wave’s H-field may now be calculated using Maxwell’s 31 equation, namely,

kxE =puoH, — kE_ z—-kE XxX=puoH,

xyo zyo

- (0/c)nsin@'E F+i(w/c)nysin® 0'—sin* 0, E' % = y,w H

— H! =[i\/sin2 ' —sin’6), &+sin9i£}nE;o/Zo. 3)
The complete expressions for the E- and H-fields of the evanescent wave are thus found to be
E'(r,0)=Re{r,E} jexplitkx+kiz—w0)]}, (4a)
H'(r,t)=Re { [1\/ sin’0'—sin®6, X +sin eis} (nt,E! 1Z,)expli(k,x+kiz—wt)] | (4b)

b) Noting that 7, =|7,[ exp(i¢, ), where



| 7| =2cos Gi/cosé?c, (5a)

¢, =—tan”' (\/ sin’6'—sin’@, /cos 6’ ), (5b)

we write the energy-density of the electromagnetic field at all points (x,y,z,f), where z<0, as
follows:

Er ) =2 |EP+3 u|H*= 1 |2,]*|E},|* exp(2ikl 2) { £,c08 (kx—wt+, )
+ 4, (n*1Z2)[(sin* @' —sin’0,)sin (k,x —@ t+¢, ) + sin’0' cos’ (kx—wt+4, )] } (6)
Substitution for &' from Eq.(2) and setting nsind.= 1 simplifies the above equation, yielding
Ert)=1e |0, P |E)] exp[2(a)/c)n«/ sin’0' —sin*6, z} {cos[2(kx—wt+¢,)]+n’sin’0'}. (7)
Next, we calculate the Poynting vector of the evanescent field, as follows:

S(r.t)= E(r,t)x H(r,t) = (n/Z,) | 7,]* |E}, | exp(2ik! 2){ cos(k, x~wt+4, )5

x[—\/ sin’¢'—sin’6), sin(k,x—wt+4, )% +sin0' cos(k,x—wt +¢, )5} } (8)

Substitution for k.' from Eq.(2), followed by further algebraic manipulations, simplify the
above equation, yielding

S(r,t)=(n/Z,)|z,’|E! |? exp[2(a)/c)n\/ sin’@'—sin’6), z]

x{ sin@'cos? (k x —w 1+ ¢TS)&+%\/ sin’0'—sin®@, sin[2(k x—w1+ %)]5}- )

To verify the energy continuity equation, we calculate its two terms separately, namely,

i‘ix +% = (n1Z,) |7, |E exp[2(a)/c)n\/ sin*0' —sin’6, z:|

V-S(rt)=

x{ —k, sin@'sin[2(k,x ~wt + ¢, )] + (@/c)n(sin*'~sin’6,)sin[2(k,x ~w 1+ ¢, )] } (10)

Considering that k,=(@/c)n sin 0" and nsing,= 1, the above equation simplifies, yielding

V-S(r.t)=—¢0|c|’ E | eXp[Z(a)/c)n\/ sin’6'—sin’6), z}sin[2(kxx—a)t+ 4] (1)

Next, we calculate the time-derivative of the energy-density given by Eq.(7). We find

OE(r,t)
ot
It is now easy to verify that the continuity equation holds, that is, V- S(r,t) + & (r,t)/ 0t = 0.

g,0|t*|E! | exp[2(a)/c)n\/sinzﬁi —sin’6, z} sin[2(k,x—wt+¢,)].  (12)



c) The time-averaged Poynting vector is readily obtained from Eq.(9), that is,

<S(r,0)>=n/z,) |z, |E, | exp[Z(a)/c)n\/sinzei—sinzﬂc z]

x{ sin 0i<cos2(kxx—a)t+¢zv)>32 + %\/ sin’@'—sin’6, <sin[2(k,x—wt+¢, )]>2}.

:%(n 1Z) 7, * | EL |2 sin@iexp[Z(w/c)n\/ sin’0' —sin’6), z}fc. (13)

Cleary, the time-averaged z-component of the Poynting vector is zero, whereas its x-
component is a positive entity.

d) The stored areal energy-density (per unit area of the xy-plane) is obtained by integrating the

time-averaged volumetric energy-density, namely, <&(r,f)>, along the z-axis, from z=-o to
z=0. We find

0 _1 21 i (2 2 - 2l
f, <E(xy.zn>dz=1e |7 P|EL [P {<cos[2kx—wt+¢, )]>+n’sin’0'}

g _Owexp[2(a)/c)n\/ sin’0'—sin’6, z}dz

e,n’sin?@'|7,2|Ei |2 n(sin20'/cosf)?|E! |?
— 0 . yo - .c yo ) (14)
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Note that the stored energy-density increases indefinitely as 0" approaches 6, from above.

Problem 3) a) Since the units of M(r,) are weber/m? and the delta-function has units of 1/m,
the coefficient M,, must have the units of weber/m.

b) In the absence of pge(r,?) and P(r,f), the bound electric charge-density of the magnetized
sheet is zero, that is, p.° =0, while the bound current-density is given by

bound

T = 1 VX M(r,0) = 15 (DM, 10y)% = 11, M, 8 (y) cos(,0)%.

c¢) Since the electric charge-density of the sheet is zero everywhere, we have w(r,¢)=0. As for
the vector potential, we use the symmetry of the problem and compute A(r,¢) only at
(x=0,y,z=0), as follows:

houna (F's =1 = #'|/c)

|r=r']

dr’

A(r.0) = (u,/47)[
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+sin(a,t) j ifw&’(y’)dy’df fj:o

G&R3876-1.2F> =1um & {—cos(a)ot)r:oé"(y')dy' [ ¥l (@, /e)x"+ (r=y) v

wsino,n]” 50| @05 =) e

G&R 667734 |> =%Mmfc{—<wo/c>*cos(cog)j_j(y’)sin[(wo/c)\/(y—y'f]dy'

+ (@) sin(@n] " 8'()eos[(@,fe)r =y Ty |

= —% M xsign(y)[cos(m,t)cos(m,|y|/c) +sin(w,t)sin(w,| y|/c)] < Sifting property of 5'(-)

=—1 M sign(y)cos [m,(t-|yl/c)]%.
d) E(r,t)y=—Vy -0A/0t = —% o M  sign(y)sin[a,(t—|y|/c)]x.

B(r,1)=V x A=—(04,10y)=1(0,/c)M, sin[o(t-|y|/c)]E.

Problem 4) a) As shown in figure (a) below, the function &'(x) is positive when x is negative,

and negative when x is positive. Therefore, the product 6'(x)d’(y) is positive in the first and third
quadrants of the xy-plane, and negative in the second and fourth quadrants; see figure (b).
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b) The charge-density p is in units of coulomb/m’. Since &'(x) and &'(y) have units of 1/m?,
while the units of §(x) are 1/m, we conclude that the units of O must be coulomb - m?.



c¢) The scalar potential of the quadrupole may be calculated with the aid of the sifting property of
the delta-function and its derivative. We will have

w(r)=4xe) " [ [p()|r-r'|1dr
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Note that the potential drops with the cube of the distance  from the origin, in contrast with
a point-charge, whose potential drops as 1/r, or a point-dipole, whose potential drops as 1/r°.
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