Opti 501 Final Exam Solutions Fall 2011

Problem 1) a) In the limit when a— o0, the symmetric function g,(x) becomes tall and narrow,

with an area that is always equal to 2. Therefore, &'m 0,(X) =26(X). [Odd terms omitted, as

A{ they integrate to zero.
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In the limit ¢ — o0, all the terms under the summation sign vanish, leaving 2f, =2f(x=0) as
the value of the integral. This, of course, is just a manifestation of the sifting property of 25(x).

c) The function hs(x) is the derivative of —YvBexp(—Bx%), which approaches %2V 5(X) in the
limit when g— . Therefore, the limit of hz(x) is the delta-function-derivative 1/21/_5'(X)
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When f— o, the terms under the summation sign vanish, leaving 1/21/7?f1=1/zx/7?df(x)/dx|xzo
as the value of the integral. This is nothing more nor less than the sifting property of —%v7z &' ().

Problem 2) a) The total charge Q and the magnetic dipole moment m; are readily found upon
integration, as follows:
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b) The E-field energy of the spherical shell is obtained by integration over the field intensity
outside the shell, as the field inside is zero.
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The H-field energy has contributions from the magnetic field inside as well as that outside
the shell, namely,
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The H-field energy is seen to be divided between inside and outside the sphere, with the
inside field containing twice as much energy as the outside field.

Inside the sphere, the Poynting vector is zero because the E-field is zero, but outside it is
given by

Q 2(20059r+sm90) _Qmsing g
4 grz

0

S(r)=E(r)xH(r) = r>R

Arpr® 167°r°

The EM angular momentum density with respect to the origin is L(r) = r xS(r)/c?; therefore,
the total angular momentum of the spinning sphere may be obtained as follows:
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Note that this angular momentum is purely due to the electromagnetic field; as such, it is
independent of the mass of the sphere.

Problem 3)
a) E(r,t) = E expli(k - r —mot)], H(r,t)=H_ exp[i(k-r —ot)].
Incident beam: k. = (w/c)siné, k,=0,  ki=—(w/c)cosé.

E,=E, =0, E,, = arbitrary.

K'xE'=pyu@oH — (KX+K2)xE Y =po(H, X+H,7)

i ZCOSHE‘YO H! :sinHE‘yol
X0 Z 20 Z

0 0

Reflected beam: k., = (@w/c)sing, k, =0, k] = (w/c)cosé.
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E,, =E, =0, E,, = unknown.
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Transmitted beam:  k = (w/c)sing,  k, =0,  k;=—i(w/c)y n(w)’+sin°g .
E,=0, k"-E'=0 - E,=-kE,/k;=0; E, =unknown.
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b) Matching the boundary conditions yields E,s and Eyc}, as follows:
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c) The reflectance R is the absolute value of the Fresnel reflection coefficient squared, that is,
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d) The field amplitudes decay with distance z inside the plasma-like medium as exp[-Im(k;)Z].
The penetration-depth is thus a few times the inverse of Im(k;), which is on the order of
Aol VN (w)?+sin*0, where A,=2xClw is the vacuum wavelength. Note that, if n is small, the
penetration-depth at normal incidence could be large, but with an increasing 6, the penetration-
depth shrinks rapidly. The E- and H-fields, of course, carry energy, having a total energy-density
Vool E'? +¥au0| H'|? inside the plasma-like medium. This energy-density must be integrated over
the entire penetration-depth of the fields to yield the total energy content of the evanescent field.
As for the time-averaged Poynting vector, we have
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Clearly, the component of the Poynting vector along the z-axis is zero, indicating that, in the
steady-state, no electromagnetic energy is absorbed within the plasma-like medium. This is
consistent with the 100% reflectivity obtained in part (c).

Problem 4)
a) E(r,t) = E exp[i(k-r —ot)], H(r,t)=H_ exp[i(k-r —ot)].
Incident beam: k., =(w/c)nsing, k, =0, k! =—(w/c)ncosé.

El, =arbitrary, El,=0; Kk'-E'=0 — EL=-kEL/K.

X X0



K'xE'=pgu@oH —» (KX+K2)x(E,X+E 2) = poH, > KE -KE, =u,0H|

Z X0

Hi K2+ki? o (w/c)*n? - n
SN

Lo @lcncosd ° Z.cosd

Reflected beam: k., =(w/c)nsing, k =0, k; =(w/c)ncoso.
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E,, = unknown, E, =0 k"“E'=0 —» E_,=-kE_ /K.
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Evanescentbeam:  k, =(w/c)nsing,  k,=0,  k;=—i(w/c)V n’sin’d 1.

E, =unknown, E =0, k'-E'=0 — E,=-kE,/k.
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b) Matching the boundary conditions yields the evanescent field amplitudes as follows:

i L pr E, =E,-E,
Exo + Exo = Exo X0 X0 X0
- n i n . i

- Exo + Exo =
ZOCOS 0 ZOCOS 0 Zo\/ nZSinze -1

2n+/ n*sin’g -1
n+/ n%sin*d -1 —icos@

— i 2 i .
EC——KE. /K — EL- 2imsing i

X X0 Z0 2« 2 .
n+/ n°sin“d -1 —icosé@

2iny n’sin’@ -1 £
z,[n/ n?sin’e —1—icos]

¢) The time-averaged energy-density of the evanescent E-field is calculated as follows:
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Integration over z from —o to O then yields the total E-field energy per unit area of the
interface, as follows:

[° &(rdz=

212

200 2ein2
n“(2n-sin“ 8 -1) go‘E;o

2(w/c) (N*~D[(n*+1) sin*d -1]v/ n’*sin°6 -1

Similarly, the time-averaged energy-density of the evanescent H-field is calculated as follows:
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Integration over z from —o to 0 then yields the total H-field energy per unit area of the
interface, as follows:
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The total electromagnetic energy stored in the evanescent field (per unit area of the
interface) may thus be obtained by adding the preceding expressions for the E- and H-field
energies. Note that the energy content of the evanescent field is not equally split between the E-
and H-fields. _

If the final result is to be expressed in terms of the incident optical power P' (rather than the

intensity of the incident beam’s E-component), the relation between P' and IEXO'I2 is found to be
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Considering that the incident beam’s footprint is larger than its cross-sectional area by a
factor of cosé, we may finally relate the evanescent stored energy to the incident optical power
(per unit cross-sectional area of the incident beam) as follows:
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