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Problem 5) a) The membrane’s local slopes along the 𝑥𝑥 and 𝑦𝑦 axes, namely, 𝜕𝜕𝑥𝑥𝑧𝑧(𝑥𝑥, 𝑦𝑦, 𝑡𝑡) and 
𝜕𝜕𝑦𝑦𝑧𝑧(𝑥𝑥, 𝑦𝑦, 𝑡𝑡), can be approximated via tan 𝜃𝜃 ≅ sin 𝜃𝜃 to yield the vertical component of the force 
acting on the infinitesimal ∆𝑥𝑥 × ∆𝑦𝑦 rectangular section of the membrane, as follows: 

 𝐹𝐹𝑧𝑧 = 𝑇𝑇∆𝑦𝑦[𝜕𝜕𝑥𝑥𝑧𝑧(𝑥𝑥 + ½∆𝑥𝑥, 𝑦𝑦, 𝑡𝑡) − 𝜕𝜕𝑥𝑥𝑧𝑧(𝑥𝑥 −½∆𝑥𝑥, 𝑦𝑦, 𝑡𝑡)] + 𝑇𝑇∆𝑥𝑥[𝜕𝜕𝑦𝑦𝑧𝑧(𝑥𝑥, 𝑦𝑦 + ½∆𝑦𝑦, 𝑡𝑡) − 𝜕𝜕𝑦𝑦𝑧𝑧(𝑥𝑥, 𝑦𝑦 − ½∆𝑦𝑦, 𝑡𝑡)]. (1) 

Adding the friction force −𝛽𝛽∆𝑥𝑥∆𝑦𝑦𝜕𝜕𝑡𝑡𝑧𝑧(𝑥𝑥, 𝑦𝑦, 𝑡𝑡), which acts in opposition to the local velocity, 
to the above tensile force, then equating the total force with mass (𝜌𝜌∆𝑥𝑥∆𝑦𝑦) times the 
acceleration 𝜕𝜕𝑡𝑡2𝑧𝑧(𝑥𝑥, 𝑦𝑦, 𝑡𝑡) — in accordance with Newton’s second law — one arrives at the 
following equation of motion: 

 𝑣𝑣2 �𝜕𝜕
2𝑧𝑧(𝑥𝑥,𝑦𝑦,𝑡𝑡)
𝜕𝜕𝑥𝑥2

+ 𝜕𝜕2𝑧𝑧(𝑥𝑥,𝑦𝑦,𝑡𝑡)
𝜕𝜕𝑦𝑦2

� = 𝜕𝜕2𝑧𝑧(𝑥𝑥,𝑦𝑦,𝑡𝑡)
𝜕𝜕𝑡𝑡2

+ 𝛾𝛾 𝜕𝜕𝜕𝜕(𝑥𝑥,𝑦𝑦,𝑡𝑡)
𝜕𝜕𝜕𝜕

 . (2) 

b) The boundary conditions on the three sides where the membrane is firmly attached to the 
drumhead are 𝑧𝑧(𝑥𝑥 = 0, 𝑦𝑦, 𝑡𝑡) = 𝑧𝑧(𝑥𝑥 = 𝐿𝐿𝑥𝑥, 𝑦𝑦, 𝑡𝑡) = 𝑧𝑧(𝑥𝑥, 𝑦𝑦 = 0, 𝑡𝑡) = 0. On the fourth side, where 
the membrane is free to vibrate in the 𝑧𝑧 direction, we must have 𝜕𝜕𝑦𝑦𝑧𝑧(𝑥𝑥, 𝑦𝑦 = 𝐿𝐿𝑦𝑦, 𝑡𝑡) = 0. 

The initial position 𝑧𝑧(𝑥𝑥, 𝑦𝑦, 𝑡𝑡 = 0) and the initial velocity 𝜕𝜕𝑡𝑡𝑧𝑧(𝑥𝑥, 𝑦𝑦, 𝑡𝑡 = 0) at 𝑡𝑡 = 0 are known 
functions of the spatial coordinates (𝑥𝑥, 𝑦𝑦). These constitute the initial conditions for our vibrating 
membrane. 
 
c) Invoking the method of separation of variables, we write 𝑧𝑧(𝑥𝑥, 𝑦𝑦, 𝑡𝑡) = 𝑓𝑓(𝑥𝑥)𝑔𝑔(𝑦𝑦)ℎ(𝑡𝑡). 
Substitution into the equation of motion then yields 

 𝑣𝑣2 �𝑓𝑓
″(𝑥𝑥)
𝑓𝑓(𝑥𝑥) + 𝑔𝑔″(𝑦𝑦)

𝑔𝑔(𝑦𝑦) � = ℎ″(𝑡𝑡) + 𝛾𝛾ℎ′(𝑡𝑡)
ℎ(𝑡𝑡) = 𝑐𝑐. (3) 

On the left-hand-side of the above equation, the first term must equal a constant 𝑐𝑐1, that is, 
𝑓𝑓″(𝑥𝑥) = 𝑐𝑐1𝑓𝑓(𝑥𝑥). The boundary conditions at 𝑥𝑥 = 0 and 𝑥𝑥 = 𝐿𝐿𝑥𝑥 demand that the solution to this 
equation be 𝑓𝑓(𝑥𝑥) = sin(𝑚𝑚𝑚𝑚𝑚𝑚 𝐿𝐿𝑥𝑥⁄ ), where 𝑚𝑚 is an arbitrary positive integer. Consequently, 
𝑐𝑐1 = −(𝑚𝑚𝑚𝑚 𝐿𝐿𝑥𝑥⁄ )2. 

As for the second term on the left-hand-side of Eq.(3), we must have 𝑔𝑔″(𝑦𝑦) = 𝑐𝑐2𝑔𝑔(𝑦𝑦). The 
boundary conditions now demand that 𝑔𝑔(𝑦𝑦) = sin[(𝑛𝑛 − ½)𝜋𝜋𝜋𝜋 𝐿𝐿𝑦𝑦⁄ ], where 𝑛𝑛 is another arbitrary 
positive integer. Consequently, 𝑐𝑐2 = −[(𝑛𝑛 − ½)𝜋𝜋 𝐿𝐿𝑦𝑦⁄ ]2. 

The constant 𝑐𝑐 is thus seen to be equal to (𝑐𝑐1 + 𝑐𝑐2)𝑣𝑣2 = −𝜋𝜋2𝑣𝑣2[(𝑚𝑚 𝐿𝐿𝑥𝑥⁄ )2 + (𝑛𝑛 − ½)2 𝐿𝐿𝑦𝑦2� ]. 
The solutions of the ordinary differential equation ℎ″(𝑡𝑡) + 𝛾𝛾ℎ′(𝑡𝑡) − 𝑐𝑐ℎ(𝑡𝑡) = 0 are obtained by 
setting ℎ(𝑡𝑡) = exp(𝜂𝜂𝜂𝜂), which yields 𝜂𝜂2 + 𝛾𝛾𝛾𝛾 − 𝑐𝑐 = 0. The solutions of this quadratic equation 
are readily found as 𝜂𝜂± = −½𝛾𝛾 ± �¼𝛾𝛾2 − 𝜋𝜋2𝑣𝑣2[(𝑚𝑚 𝐿𝐿𝑥𝑥⁄ )2 + (𝑛𝑛 − ½)2 𝐿𝐿𝑦𝑦2⁄ ]. Depending on the 
value of the constant inside the radical, the solutions 𝜂𝜂+ and 𝜂𝜂− may be 
i) distinct complex conjugates — i.e., the case of under-damped vibrations; 
ii) real and equal — i.e., the case of critically-damped vibrations; 
iii) real and distinct — i.e., the case of over-damped vibrations. 

The general solution for the time-dependent function is ℎ(𝑡𝑡) = 𝐴𝐴 exp(𝜂𝜂+𝑡𝑡) + 𝐵𝐵 exp(𝜂𝜂−𝑡𝑡) 
when 𝜂𝜂+ ≠ 𝜂𝜂−, and ℎ(𝑡𝑡) = 𝐴𝐴 exp(𝜂𝜂𝜂𝜂) + 𝐵𝐵𝐵𝐵 exp(𝜂𝜂𝜂𝜂) when 𝜂𝜂+ = 𝜂𝜂− = 𝜂𝜂. In what follows, we 
shall omit the case of critical damping. The admissible vibrational modes in cases of under-
damped and over-damped oscillations are thus given by 
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 𝑧𝑧𝑚𝑚𝑚𝑚(𝑥𝑥, 𝑦𝑦, 𝑡𝑡) = [𝐴𝐴𝑚𝑚𝑚𝑚 exp(𝜂𝜂𝑚𝑚𝑚𝑚
+ 𝑡𝑡) + 𝐵𝐵𝑚𝑚𝑚𝑚 exp(𝜂𝜂𝑚𝑚𝑚𝑚

− 𝑡𝑡)] sin(𝑚𝑚𝑚𝑚𝑚𝑚 𝐿𝐿𝑥𝑥⁄ ) sin[(𝑛𝑛 − ½)𝜋𝜋𝜋𝜋 𝐿𝐿𝑦𝑦⁄ ]. (4) 

The 𝐴𝐴𝑚𝑚𝑚𝑚 and 𝐵𝐵𝑚𝑚𝑚𝑚 for over-damped oscillations are real-valued constant coefficients to be 
determined by matching the initial conditions at 𝑡𝑡 = 0. In the case of under-damped oscillations, 
where 𝜂𝜂𝑚𝑚𝑚𝑚

+  and 𝜂𝜂𝑚𝑚𝑚𝑚
−  are a pair of complex conjugates, we will have 𝐴𝐴𝑚𝑚𝑚𝑚 = 𝐵𝐵𝑚𝑚𝑚𝑚

∗ , in which case the 
real and imaginary parts of these coefficients are, once again, determined by matching the initial 
conditions at 𝑡𝑡 = 0. A similar procedure, of course, can be followed in cases of critical-damping. 
 
d) The general solution of the wave equation, Eq.(2), subject to the aforementioned boundary 
conditions is a superposition of all the vibrational modes given in Eq.(4), that is,  

 𝑧𝑧(𝑥𝑥, 𝑦𝑦, 𝑡𝑡) = ∑ ∑ [𝐴𝐴𝑚𝑚𝑚𝑚 exp(𝜂𝜂𝑚𝑚𝑚𝑚
+ 𝑡𝑡) + 𝐵𝐵𝑚𝑚𝑚𝑚 exp(𝜂𝜂𝑚𝑚𝑚𝑚

− 𝑡𝑡)] sin(𝑚𝑚𝑚𝑚𝑚𝑚 𝐿𝐿𝑥𝑥⁄ ) sin[(𝑛𝑛 − ½)𝜋𝜋𝜋𝜋 𝐿𝐿𝑦𝑦⁄ ]∞
𝑛𝑛=1

∞
𝑚𝑚=1 . 

 (5) 
The unknown coefficients 𝐴𝐴𝑚𝑚𝑚𝑚 and 𝐵𝐵𝑚𝑚𝑚𝑚 must be obtained from the initial conditions. Upon 

expanding 𝑧𝑧(𝑥𝑥, 𝑦𝑦, 𝑡𝑡 = 0) and 𝜕𝜕𝑡𝑡𝑧𝑧(𝑥𝑥, 𝑦𝑦, 𝑡𝑡 = 0) in their respective Fourier series, then matching 
the corresponding Fourier coefficients with those given by (or derived from) Eq.(5), the general 
solution 𝑧𝑧(𝑥𝑥, 𝑦𝑦, 𝑡𝑡) for all times 𝑡𝑡 ≥ 0 will be uniquely identified. 


