Opti S03A Final Exam Solutions Spring 2021

Problem 4)
f mdx = %, ab > 0. (Gradshteyn &Ryzhik 3.417-1)
The poles of the integrand are at e?’n = —(b/a)? = e2MW/@+@n+LT  Therefore, z, =

In(b/a) + i(n + ¥%)m. The integration contour is a rectangle of height iw and width 2L — oo, as
depicted below. The residue at z, = In(b/a) + i(7/2) is readily evaluated, as follows:
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The loop integral is thus found to be
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The remaining integral, namely, that of im/(a?e* + b?e™%), is evaluated along similar lines,
yielding
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Combining Egs.(2) and (3), we finally arrive at
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