Opti 503A Final Exam Solutions Spring 2015

Problem 3)

a) We guess that the solution is of the form f(x) = x*. substitution into the differential equation
then yields
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b) When s; happens to be equal to s,, the above method yields only one solution. This happens
when the expression under the square-root vanishes, that is, (a — b)? = 4ac, or, b = a + 2+/ac.
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Thus, in the limit when s; = s, = s, we will have f(x) = Ayx® In x. The general solution of the
equi-dimensional differential equation in the special case when b = a + 2+vac may thus be
written as f(x) = (4y + 41 Inx)x5.
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Therefore,

ax®f"(x) + bxf'(x) + cf(x) = a[(2s — 1) + s(s — V) Inx]x* + b(1 + sInx)x* + c(Inx)x*
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In the special case when b = a + 2v/ac, we have s = s; = s, = (a — b)/(2a) = F+/c/a. Also,

the coefficient of In x in the above expression may be written as a(s + +/c/a)?. Both terms of
the expression thus vanish, confirming f(x) = x° In x as a solution of the differential equation.




