Opti S03A Final Exam Solutions Spring 2017

Problem 2) a) Let the Fourier transform of f(x) be F(s) = f_oooo f(x) exp(—i2msx) dx. Then

flx) = ffoooF (s)exp(i2msx)ds, and F{f'(x)} =i2nsF(s). The Fourier transform of the
differential equation may thus be written as
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nts (i2ms +n).
The solution of the differential equation may now be obtained by inverse Fourier

transforming the above F(s), as follows:
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The integrands on the right-hand-side of Eq.(2) have two poles, one at z, = 0, the other at
z; = in/2m, as shown in the figures below. Depending on the value of x, the integration contour
may be in the upper- or lower-half of the complex plane. The contribution of the large semi-
circle to the loop integral vanishes when its radius R goes to infinity (Jordan’s lemma). As for
the pole at z,, only one-half of its residue must be taken into account because this pole is located
directly on the x-axis.
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Both integrals must be evaluated in the lower-half of the complex plane when x < —%. Thus
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The same result continues to apply to the second integral for x < %2 as well. If x > —7%, the
first integral must be evaluated in the upper-half plane, as follows:
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Finally, if x > %2, the second integral must also be evaluated in the upper-half-plane, that is,
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The complete solution is now obtained from Eq.(2) upon substitution from Egs.(3)-(5), as
follows:

0; x < =,
f(x) =1 {1 —exp[-n(x+¥)1}/n; —¥h <x <Y, (6)
lexp(n/2) — exp(=n/2)] exp(—=nx)/n; x> .
b) The function f(x) is continuous at x = —%, where f(x™) = f(x*) = 0, and also at x = 14,

where f(x7) = f(x*) = [1 — exp(—n)]/n. Any discontinuity in f(x) would have been
unacceptable, because the original differential equation contains f'(x) on the left-hand side, but
no corresponding delta-functions on the right-hand side. Note also that f(x) approaches zero as
x — oo, all of which in keeping with one’s expectations from the solution of the differential
equation.

¢) A plot of f(x) is shown below.
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