Problem 1) a) f(x) = [Rect(x) cos(mx)] * Comb(x).

b) First, we find the Fourier transform of one period of the function |cos(mx)| in the interval
[—14, + 4], as follows:
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Alternatively, invoking the fact that a single period of f(x) is represented by Rect(x) cos(mx),
we may use the convolution theorem to write

F{Rect(x) cos(mx)} = sinc(s) * X.[6(s + 1) + §(s — )]
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Considering that the convolution of one period of f(x) with comb(x) produces the periodic
function |cos(mx)|, the Fourier transform of f(x) must be the product of comb(s) and the
Fourier transform of a single period of f(x), which is given by Egs.(1) and (2). The Fourier
series coefficients of f(x) are thus given by
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The Fourier series representation of f(x) is readily found to be
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